首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the critical heat currentQ c in He II has been measured in the temperature region 3 · 10?5 (?K)<T λ?T<1.2 · 10?2 (?K). The result Qc∫ (T λ?T)1.07±0.01is consistent with a divergent mutual friction nearT λ proposed recently byAhlers.  相似文献   

2.
Some problems in relativistic thermodynamics   总被引:1,自引:0,他引:1  
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0/√1 ? v 2/c 2. Relativistic dependences for heat and mass transfer, for Ohm’s law, and for a viscous flow of a liquid have also been derived.  相似文献   

3.
吉光达  蔡俊道 《物理学报》1979,28(6):853-864
从超导临界温度级数公式(1)出发,得到了B类超导体同位素效应的表达。在μ*=0及μ*≠0时,我们得到了Tc上限的级数表达式,其结果与数值解符合甚好。最后,在μ*=0时,讨论了Tc与各种谱参数的关系。由级数表达式可以清楚地看出,当固定不同参数时,Tc的行为完全不同,从而统一解释了不同作者关于声子谱对Tc影响的不同结论。我们着重指出,在大多数情况下,级数公式(1)仅取前两项,可作为数值解的很好近似,从而大大简化了级数公式。预计可以由此简化公式出发研究其它问题。 关键词:  相似文献   

4.
The norperturbative QCD vacuum at finite temperature in a external magnetic field is studied. Equations that relate nonperturbative QCD condensates at finite temperature to the thermodynamic pressure at T ≠ 0 and H ≠ 0 are obtained, and low-energy theorems are derived. The free energy of the QCD vacuum in the hadronic phase at H ≠ 0 is calculated, and expressions for the quark and gluon condensates are obtained. Various limiting cases for the behavior of the condensates at low and high temperatures and in weak and strong magnetic fields are investigated. A new interesting phenomenon that consists in the freezing of the quark condensate by a magnetic field is found. The character of spontaneous chiral-symmetry breaking in finite-temperature QCD in a magnetic field is studied. For this purpose, the Gell-Mann-Oakes-Renner formula relating the pion mass M π and the axial-vector coupling constant F π to the quark condensate is derived at T ≠ 0 and H ≠ 0. It is shown that this formula preserves its form at finite temperature after taking into account a magnetic field—that is, no additional terms independent of T and H appear. Thus, the scheme of soft chiral-symmetry breaking remains unchanged. The quark-hadron phase transition in QCD in a magnetic field is studied. It is shown that the phase-transition temperature becomes lower than that in the case of zero magnetic field.  相似文献   

5.
It has been shown by the example of 3He in aerogel that the correlation in the position of impurities may have a considerable effect on the transition temperature T c of a Fermi fluid to an unconventional superfluid or superconducting state if the correlation radius of the system of impurities exceeds the correlation length ξ0 of the emerging superfluid phase. A decrease in T c of 3He in aerogel has been expressed in terms of the structure factor of aerogel. Taking into account the fractal structure of aerogel provides a simple formula that satisfactorily describes the observed decrease in T c.  相似文献   

6.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

7.
Using general methods developed in a previous treatment we study correlations in inhomogeneous Ising models on a square lattice. The nearest neighbour couplings can vary both in strength and sign such that the coupling distribution is translationally invariant in diagonal direction. We calculate correlations parallel to the layering in the diagonally layered model with periodv=2, the so-called “general square lattice” model (GS). If the model has a finite critical temperature,T c>0, we have a spontaneous magnetization belowT c vanishing atT c with the Ising exponent β=1/8. AtT c correlations decay algebraically with critical exponnet η=1/4 and exponentially forT>T c. In the frustrated case we have oscillatory behaviour superposed on the exponential decay where the wavevector of the oscillations changes at some “disorder temperature”T D(>T c) from commensurate to temperature-dependent in commensurate periods. If the critical temperature vanishes,T c=0 we always have exponential decay at finite temperatures, while atT=T c=0 we encounter either long-range order or algebraic decay with critical index η=1/2, i.e.T=0 is thus a critical point.  相似文献   

8.
The imaginary parts of microwave conductivity σ″(T<Tc) and resistivity ρ (T)=1/σ(T>Tc) along (σ ab and ρab) and across and (σ c and ρc the cuprate ab planes of a YBa2Cu3O7?x crystal with the oxygen doping level x varying from 0.07 to 0.47 were measured in the temperature range 5≤ T≤200 K. In the superconducting state, the σ ab (T)/σ ab (0) and σ c (T c (0) curves coincide for an optimally doped (x=0.07) crystal, but, with an increase in x, the slopes of the σ c (T)/σ c (0) curves decrease noticeably at T<Tc/3, on the background of small changes happening to the σ ab (T ab (0) curves. The two-dimensional (2D) transport along the ab planes in the normal state of YBa2Cu3O7?x is always metallic, but there is a crossover (at x=0.07) from the Drude to hopping (at x>0.07) conductivity along the c axis. This is confirmed both by the estimates of the lowest metallic and the highest tunneling conductivities along the c axis and by quantitative comparison of the measured ρc(T) curves with the curves calculated in the polaron model of quasiparticle transport along the c axis.  相似文献   

9.
作者在μ*=0情形,从Eliashberg方程解析地导出如下的Tc公式:Tc=αωlogexp{-b((1+cλ)/λ)},式中α=2γ/π,b=c=1;Inγ=C=0.5772是Euler常数。这个Tc公式只有在Tc=0.36/α(k)以下才是正确的,α是个大于1并随材料而异的常数。我们推测,当Tc超过上述范围后,Tc公式的函数结构很可能不同于McMillan Tc公式,至少α,b和c等参量不再是些不依赖于材料的常数了。 关键词:  相似文献   

10.
A stronger version of the Bogoliubov inequality is used to derive an upper bound for the anomalous average ¦x)>|s of an interacting nonrelativislic Bose fielda(x) at a finite temperature. This bound is ¦a(x)2|s <pR, whereR satisfies 1 -R = (RT/2T c v/2, withv the dimensionality, andT c the critical temperature in the absence of interactions. The formation of nonzero averages is closely related to the Bose-Einstein condensation and ¦2 is often believed to coincide with the mean densitypa of the condensate. We have found nonrigorous arguments supporting the inequality po ? ¦2, which parallels the result of Griffiths in the case of spin systems.  相似文献   

11.
The mobility of impurities in He3 is calculated using Kubo's formula and assuming a quasi-particle-like behaviour of the impurities. This is reasonable in the low temperature limit. If one has to deal with charged particles having a large cross-section for the scattering of He3 quasi-particles on account of their large effective radii, this limit is as low as presumably 0.01 °K. For uncharged particles the validity of the theory is not confined to such a small region of the temperature. The mobility behaves as 1/T 2 and its dependence upon the frequency is almost that of a classical sphere experiencing a force of friction proportional to its velocity. The parameters occuring in the formula for the mobility (the effective mass and the scattering cross-section between He3 and the impurities) may in principle be determined by independent experiments.  相似文献   

12.
《Physica B+C》1988,147(2-3):175-180
In this paper a model to describe the free carrier-bipolaron interacting system is proposed. Effective hopping of the bipolaron is studied in the slave-boson approach, and a characteristic temperature T1 is obtained, below which the system enters a coherent state. The density of states in the normal state and the superconductivity of the system are discussed in a quasiparticle picture. The results show that the mixing between the free carrier and the bipolaron results in an enhancement of the effective mass of the quasiparticle and meanwhile the renormalized coupling interaction, arising from the negative correlation energy in the bipolaron region, enhances the effective superconducting coupling interaction. Under the most favourable conditions, the superconducting transition temperature Tc ∼ ωc, where ωc is the Debye frequency related with local electron-phonon coupling. In general we have T1 > TcTc0 (Tc0 is the superconducting transition temperature of a usual superconductor). Therefore the system will firstly enter a coherent state before becoming a high-Tc superconductor.  相似文献   

13.
Temperature dependences of the velocity of longitudinal sound V 1 and the internal friction Q ?1 are studied for a La0.8Sr0.2MnO3 single crystal in the temperature range 5–350 K. The latter includes the temperature of the structural phase transition T s ≈95 K (from the Pnma orthorhombic low-temperature phase to the $R\bar 3c$ rhombohedral high-temperature one) and the Curie point T c =308 K. Near the temperatures T s and T c , the curves V 1(T) and Q ?1(T) exhibit pronounced singularities. Outside the vicinities of T s and T c , the velocity of sound monotonically decreases with increasing temperature. A thermal hysteresis of giant width is observed in the aforementioned dependences. The hysteresis is attributed to the following mechanism: when the crystal under study is heated starting at temperatures T<T s , some regions occupied by the Pnma low-temperature phase are retained in the $R\bar 3c$ matrix up to the temperature T=350 K.  相似文献   

14.
The quantum heat generation, interaction force, and friction torque for two rotating spherical nanoparticles with the radius R are calculated. In contrast to a static case where an upper bound in the radiative heat transfer between two particles exists, the quantum heat generation for two rotating particles diverges at distances between particles d < d 0 = R(3/ε″(ω0))1/3 (where ε″(ω0) is the imaginary part of the dielectric function for the material of a particle at the resonance frequency ω0), when the rotation frequency coincides with poles in the excitation generation rate at Ω = 2ω0. These poles are due to the anomalous Doppler effect and the mutual polarization of particles and exist even in the presence of dissipation in particles. The anomalous heat generation is associated with the conversion of mechanical rotation energy into heat mediated by quantum friction. Similar singularities also exist for the interaction force and friction torque. The results can be of significant importance for biomedical applications.  相似文献   

15.
The dynamics of a two-dimensional vortex system with strong periodic square columnar pins is investigated. For the case vortex number matching pinning number, we find that the vortex liquid is frozen into square lattice via a continuous transition, and the freezing (melting) temperature Tm is the same as the thermal depinning temperature of vortices, which are different from the first-order phase transition at weak pinning. The zero-temperature critical depinning force Fc0 is exactly the same as the maximum pinning force, and the depinning property at T = 0 can be expressed by scaling v  (F ? Fc0)β with the exponent β close to 0.5. The vF curves at temperatures below Tm show that vortices are pinned at small driving force.  相似文献   

16.
For quenched dilute ferromagnets with a fractionp of spins (nearest neighbor exchange energyJ) and a fraction 1 —p of randomly distributed nonmagnetic atoms, a crossover assumption similar to tricritical scaling theory relates the critical exponents of zero temperature percolation theory to the low temperature critical amplitudes and exponents near the critical lineT c (p)>0. For example, the specific heat amplitude nearT c (p) is found to vanish, the susceptibility amplitude is found to diverge forT c (pp c ) → 0. (Typically,p c =20%.) AtT=0 the spin-spin correlation function is argued from a droplet picture to obey scaling homogeneity but (at fixed distance) not to vary like the energy; instead it varies as const + (p c p)2β +? for fixed small distances. A generalization of the correlation function to finite temperatures nearT c (p) allows to estimate the number of effective percolation channels connecting two sites in the infinite (percolating) network forp>p c ; this in turn gives, via a dynamical scaling argument, a good approximation for theT=0 percolation exponent 1.6 in the conductivity of random three-dimensional resistor networks. This channel approximation also givesΦ=2 for the crossover exponent; i.e. exp(?2J/kT c (p)) is an analytic function ofp nearp=p c . An appendix shows that cluster-cluster correlations atT=0 (excluded volume effects) are responsible for the difference between percolation exponents and the (pure) Ising exponents atT c (p=1).  相似文献   

17.
The magnetotransport and magnetic properties of La 1 ? x Ca x MnO3 polycrystalline samples (x = 0–0.3) annealed under vacuum and in the oxygen environment are investigated in the temperature range from 77 to 400 K. The magnetic studies of lightly doped manganites reveal persistence of short-range magnetic order up to a temperature T* ≈ 300 K, which is about 2–3 times higher than their Curie temperature T C. The temperature dependence of the electrical resistivity measured from T* down to nearly TT C is fitted by the relation logρ ~ T ?1/2, which is characteristic of granular metals with electrons tunneling among nanoclusters of magnetic metals embedded in a dielectric host. The magnetoresistance of polycrystalline samples annealed in the oxygen environment has been observed to increase. The electrical, magnetic, and magnetotransport properties of the manganites can be accounted for by the formation of magnetic nanoclusters below T*, tunneling (or hopping) of carriers among the nanoclusters, variation in the magnetic cluster size, and tunneling barrier thickness with variations in temperature and magnetic field strength, as well as by the effect of annealing in different media on the cluster properties.  相似文献   

18.
We reinvestigate the mode coupling approach to the central peak which occurs in the vicinity of a structural phase transition at T c. For a scalar ? 4-model it is shown that the use of renormalized vertices leads to quite different results compared to recent calculations with bare vertices. Particularly, we prove that the latter are obtained in leading order of the anharmonicity constant of the on-site potential from a perturbational treatment of the renormalized vertices. Again, this mode coupling approach may yield a dynamical transition at a temperature T c'(≥ T c) at which the dynamics becomes nonergodic, i.e. a central peak occurs. For a ? 4- model with infinite range interactions our theoretical predictions are consistent with numerical results. Furthermore, if the fluctuations in the vicinity of Tc are Gaussian, no dynamical transition occurs above Tc. Therefore the temperature T 0'obtained from the Ginzburg criterion sets an upper bound for T c'. If a dynamical transition occurs, it is shown that the nonergodicity parameter as function of wave vector q and temperature T follows from an universal master function.  相似文献   

19.
Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.  相似文献   

20.
The limiting temperatureT 0 of secondaries from \(pp/\bar pp\) collisions is estimated on the basis of the Lorentz contraction factor, to be compared with the critical temperatureT c determined by the specific heat. It is found, in terms of the critical exponent law,T 0T c ≈215 MeV for π? andK 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号