首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The holographic interferometry was used for investigations on temperature and concentration boundary layers during the crystallization of salts from aqueous solutions. Results are discussed for aqueous solutions of sodium sulfate and potassium nitrate. The Nusselt numbers derived from temperature profiles coincide very good with calculated results from heat transfer relations. However, no significant changes of concentration in the vicinity of the surface could be found. Investigations with a dissolving crystallization layer show a distinctive diffusion boundary layer. The measured results led to Sherwood numbers 24% higher than published. On the other hand no diffusion boundary layer could be detected for progressive crystallization. This means that the crystal layer grows is reaction controlled. Microscopical pictures of the crystal layer surface show a strongly rugged surface with steps of about 6o pm height. These coarse structures disturb the formation of a boundary layer and prevent the light beam which passes through the test channel. Therefore an existant diffusion boundary layer maybe covered up by the crystal layer.  相似文献   

2.
Numerical solutions are obtained for the equations of a uniform compressible boundary layer with variable physical properties in the vicinity of a stagnation point with different principal curvatures in the presence of an injected gas with the same properties as the incident flow. The results of the numerical solutions are approximated for the heat flux in the form of a relation that depends on the variation of the product of viscosity and density across the boundary layer and on the ratio of the principal radii of curvature.Using the concepts of effective diffusion coefficients in a multicomponent boundary layer, previously introduced by the author in [1], and the generalized analogy between heat and mass transfer in the presence of injection, together with the numerical solutions obtained, it is always possible, even without additional solutions of the boundary-layer equations, to derive final formulas for the heat fluxes in a flow of dissociating gas of arbitrary chemical composition, provided that we make the fundamental assumption that all recombination reactions take place at the surface.By way of example, formulas are given for the heat transfer to the surface of a body from dissociating air, regarded as a five-component mixture of the gases O, N, NO, O2, N2, and from a dissociating mixture of carbon dioxide and molecular nitrogen of arbitrary composition, regarded as an eleven-component mixture of the gases O, N, C, NO, C2, O2, N2, CO, CN, C3, CO2.In the process of obtaining and analyzing these solutions it was found that, in computing the heat flux, a multicomponent mixture can be replaced with an effective binary mixture with a single diffusion coefficient only when the former can be divided into two groups of components with different (but similar) diffusion properties. In this case the concentrations of one group at the surface must be zero, while the diffusion flows of the second group at the surface are expressible, using the laws of mass conservation of the chemical elements, in terms of the diffusion flows of the first. Then the single effective diffusion coefficient is the binary diffusion coefficient D(A,M), where A relates to one group of components and M to the other.In view of the small amount of NO(c(NO) < 0.05), the diffusion transport of energy in dissociated air maybe described with the aid of a single binary diffusion coefficient D(A, M)(A=O, N, M=O2, N2, NO). However even in the case of complete dissociation into O and C atoms at the outer edge of the boundary layer, the diffusion transport of energy in dissociated carbon dioxide can not be described accurately enough by means of a model of a binary mixture with a single diffusion coefficient, since the diffusion properties of the O and C atoms are distinctly different.  相似文献   

3.
A study is made of the transport processes in the boundary layer on a graphite surface in a stream of dissociated air. The diffusion and sublimation ablation regimes of the grahite are considered. In contrast to earlier investigations [1, 3], allowance is made for a larger number of components in the boundary layer, the multicomponent nature of the diffusion, and the disequilibrium of the chemical reactions in the gas phase. On the basis of a critical analysis of the experimental and theoretical investigations of the intermolecular interaction potentials, a model is chosen that makes it possible to calculate the transport properties of gas mixtures containing ablation products with satisfactory accuracy. The results of the numerical investigation of the problem were used to obtain the dependences of the characteristics of heat and mass transfer on the stagnation parameters of the oncoming flow and the temperature of the surface. The influence of the extent to which the chemical reactions are in disequilibrium on these characteristics is estimated. The results of the calculations are presented in the form of approximation formulas. The method of numerical solution is described elsewhere [4, 5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 97–103, May–June, 1983.  相似文献   

4.
The authors examine a most simple model of mass transfer from the heated surface of a condensed phase in the presence of chemical reactions. It is shown that decomposition of the molecules of starting substance and subsequent vaporization (or sublimation) of the decomposition products have an important influence on this process and lead to the appearance of a number of new effects not observed in the ablation of nondecomposing materials. The principal conclusions of the theory are confirmed qualitatively by the experimental data, on the degradation of certain polymers in a high-enthalpy gas jet described in the concluding section of the paper.The authors thank G. I. Barenblatt for his interest in their work.  相似文献   

5.
A study is made of the influence of the process of diffusion of diatomic molecules on the rate of their thermal dissociation. On the basis of the ladder model of the dissociation of molecules — truncated harmonic oscillators — an expression is obtained for the macroscopic reaction rate which depends explicitly and exponentially on the square of the gradient of the gas temperature. The molecules constitute a small admixture in a monatomic inert gas. The effect of the diffusion on the rate of dissociation is illustrated by the results of numerical calculation of the flow in the boundary layer around the stagnation point of a blunt body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Shidkosti i Gaza, No. 1, pp. 161–170, January–February, 1985.  相似文献   

6.
In the case of the slip flow regime expressions both for the mass velocity of a rarefied molecular gas entrained by a rotating sphere and for the moment of the friction forces exerted on the sphere by the gas are obtained with allowance for the second-order correction with respect to the Knudsen number. It is demonstrated that these quantities depend on the Prandtl number and the accommodation coefficients of the tangential impulse of the gas molecules and its flux toward the sphere surface. The results are compared with analogous results obtained in the case of diffuse reflection of the gas molecules by the sphere surface.  相似文献   

7.
马彪  白存儒  杨广珺  李栋 《实验力学》2011,26(2):170-175
后掠机翼的层流控制对于气动减阻有着重要的意义,同时也是非常复杂的研究课题.而对横流驻波的研究是实现层流翼型的一个关健.为此,本文分析并研究了在低湍流度风洞中,采用热线风速仪(CTA)与表面升华法相结合研究由横流不稳定性产生的驻波及其对转捩影响的实验技术,阐述了该实验中架设热线测量系统与升华法表面喷涂的相关技术与细节.实...  相似文献   

8.
The nature of liquid crystalline materials leads to a preferred direction of molecules in the vicinity of solid surfaces that gives them outstanding tribological properties. Intrinsic molecular order of liquid crystalline materials close to the solid boundaries protects the rubbing surfaces against wear. Due to the bio-compatible nature of most lyotropic liquid crystalline materials, they have been considered as viable candidates to be used as bio-lubricants. In order to understand the complex flow patterns and microstructure of liquid crystals, in this paper, start-up flow-induced microstructure of a nematic liquid crystal in a simplified capsular space of prosthetic hip joint was studied using the Landau-de Gennes nematodynamic theory. Flow streamlines, dimensionless pressure distribution, and rheological properties for a liquid crystal and for synovial fluid affected by rheumatoid arthritis (RA) were presented and compared. The liquid crystals exhibited higher degrees of net pressure lifting force across the capsular gap while forming an ordered molecular layer close to the solid surfaces that protects the surface against wearing mechanism while decreasing the coefficient of friction (COF). Formation of molecular microstructure in vicinity of solid surfaces with perpendicular orientation to the normal surface vector was observed.  相似文献   

9.
The behavior of hydrogen molecules in carbon nanopores of different shapes (slit-shaped, cylindrical, and spherical) is investigated using the molecular dynamics method. It is shown that an adsorbed molecular layer with increased density is formed near the nanopore walls, and dynamic equilibrium is established between this layer and the gas in the central region of the nanopore. The distribution of the density of gas molecules over the cross section is found to depend on the size and wall curvature of nanopores: with a reduction in the nanopore size, the density of the adsorbate increases more rapidly in spherical nanopores, whose walls are characterized by greater mean curvature.  相似文献   

10.
The flow in a PEM fuel cell bipolar plate with a diagonal channel structure and across a carbon paper backing layer has been experimentally studied. To examine the flow inside the plate, a liquid analogue preserving dynamic similarity has been used, applying laser-induced fluorescence. This analogy, however, cannot be used to study the flow through the carbon paper, because gas and liquid surface tension are not equivalent and their flow through a porous medium will be different. For this analysis this paper proposes as a novel application, the use of acetone vapor planar induced fluorescence. With this technique, image sequences have been obtained to visualize the gas crossing the backing layer while the plate was filled with acetone-seeded air. It has been demonstrated that the pattern of the flow emerging from the diffusion layer follows that of the pressure distribution in the plate. Hence, even an apparently non-uniform velocity distribution of the reactant gases in the plate could result in an acceptable distribution over the catalyzed electrode if the pressure field is sufficiently smooth.  相似文献   

11.
Difficulties in determining experimentally the local electrical parameters of unipolar-charged jets are arousing interest in the theoretical investigation of electrogasdynamic (EGD) flows. Free EGD jets were examined, for example, in [1–3]. In order to control the charge on the dielectric parts of aircraft surfaces, which results from their static electrification and may have certain negative consequences [4], and, moreover, to influence the flow in the boundary layer use is being made of unipolar-charged jets propagating near the dielectric [5, 6]. In [6] the case of an ion jet near a dielectric surface possessing surface conductivity was investigated. In these circumstances it is possible to neglect charge diffusion, which considerably simplifies the problem. Space charge diffusion was taken into account in [7], but subject to certain very important simplifications. The author has calculated the electrical parameters of a unipolar-charged jet propagating in a viscous incompressible gas near an ideal dielectric plate, with allowance for surface and polarization charges and, moreover, the diffusion processes near the surface. An asymptotic solution is obtained for the equations of the ionic diffusion layer as the ratio of the thickness of the diffusion layer to the thickness of the hydrodynamic boundary layer tends to zero.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 174–180, September–October, 1984.The author is grateful to V. V. Mikhailov and A. V. Kazakov for valuable advice and comments.  相似文献   

12.
The flow of rarefied gas past a sphere with no-flow condition on the surface has been well studied both experimentally and numerically. In the presence of blowing on the sphere into the oncoming flow, the reflection of the main flow from the body introduces new features. This problem has been considered in the continuum regime [1–3] and, in a kinetic approach, in a regime close to the free-molecule regime [4, 5]. In the present paper, a study is made in the transition regime on the basis of a system of two model kinetic equations of Krook. The first equation determines the distribution function of the molecules of the oncoming flow; the second describes the distribution function of the molecules flowing from the surface of the body. The introduction of the two gas species makes it possible to follow the spatial distribution of the outgassing molecules and determine what fraction of them returns to the body as a result of collisions. The drag coefficient of the sphere and the energy flux to it are determined numerically as functions of the blowing intensity, and approximate similarity laws are found.  相似文献   

13.
One-dimensional flows originating during motion of a heat-conducting piston in a gas at high values of the Reynolds number are studied. The influence of diffusion and chemical reactions is considered in the case of a binary gas mixture. A binomial external expansion taking account of the boundary-layer-displacement thickness formed ahead of the piston is found. A solution is obtained which describes the boundary layer, which includes accommodation effects. An analogous problem about plane shock reflection from a heat-conducting wall has been considered in [1–3], but without taking account of diffusion and chemical reactions. Accomodation effects were taken into account in later work, which improved the agreement between theoretical and experimental results for short times.  相似文献   

14.
The diffusion force and rate are calculated for the diffusiophoresis of a spherical particle in a binary gas mixture by solving the gas–kinetic equations. Two schemes of diffusiophoresis are considered: constant–pressure diffusion and diffusion of one mixture component through the other fixed component. The problem is solved by the integral–momentum method at arbitrary Knudsen numbers. Diffuse scattering of the gas molecules on the particle surface is assumed. The Lorentzian and Rayleigh models of a binary gas mixture are considered. The dependences of the force and rate of diffusiophoresis on the Knudsen number and the other determining parameters are analyzed. The results obtained are compared with well–known experimental data.  相似文献   

15.
A study is made of the influence of the boundary layer on the unsteady aerodynamic characteristics of blunt cones oscillating in a supersonic gas stream about zero angle of attack. A solution to the problem is constructed in the framework of the linear theory of bodies of finite thickness. Such an approach has been used [1–3] in the case of the equations of motion of an ideal gas to calculate the unsteady aerodynamic characteristics of sharp and blunt bodies of various configurations. The influence on these characteristics of the viscosity effects due to the presence on the surface of the body of a laminar boundary layer has been taken into account [4–6] for bodies of the simplest shapes (wedge, cone). The present paper considers the unsteady aerodynamic characteristics of cones and investigates the influence of rounding of the tips and laminar and turbulent flow regimes in the boundary layer.  相似文献   

16.
The state of a gas near a permeable nonisothermal body with ultrathin pores, that is, pores in which the motion of molecules is not accompanied by intermolecular collisions, is studied. A boundary layer of a new type, namely, the quasiequilibrium Knudsen boundary layer on the porous body surface, is investigated. It is formed on condition that within the body there is a heat flux, even when the body is in an equilibrium gas. The statistical methods for solving the Boltzmann equation are used to determine the temperature and pressure jumps across the Knudsen layer near thin perforated and porous membranes.  相似文献   

17.
Vacuum molecular pumps have been long known and have several advantages [1–3].Several studies have been devoted to the design of vacuum molecular pumps [7–10]. The methods developed in these studies have been based either on the formulas for gas diffusion in long pipes or on the integral equations of material balance. However, these theories do not permit obtaining design data for real designs of molecular pumps which are close to the experimental data, and, moreover, do not permit solving the practically important problem of optimizing the parameters and geometry of the molecular and turbomolecular pumps with respect to output and compression ratio. The calculations made in [8–10] are valid only for rotor speeds which are much less than the average velocities of the gas molecules. However, the studies in the second direction cannot be continued to a final result in view of the extreme complexity of the solution of the resulting system of integral equations.In the following we describe the calculation of vacuum molecular pumps, based on the Monte-Carlo method (the Monte-Carlo method has been used to calculate the conductance of the elements of vacuum lines in the free molecular regime in [4, 5, 6] and to calculate using the method of sequential approximations the flow of a rarefied gas with account for the collisions between molecules in [11]).We shall apply this method not only to systems with a high vacuum, when the collisions between molecules may be neglected, but also to systems in which in addition to the molecule collisions with the wall it is necessary to consider the possibility of a small number of mutual collisions.  相似文献   

18.
A new stable structure of the three-phase system formed by a gas, a horizontal liquid layer with a free upper surface and an underlying immiscible liquid substrate is investigated experimentally and theoretically. When the upper layer has a greater surface tension than the lower layer and its thickness is fairly small, a local deformation of its surface can lead to the development of a steady-state concentric discontinuity within whose limits the lower layer os in contact with the gas. The conditions of stability of such a phase system with a steady-state discontinuity are studied and the dependences of the discontinuity parameters on the vessel diameter, the upper layer thickness, and the liquid surface tensions are obtained for various pairs of liquids. The formulation of the analytic problem of the layer discontinuity is discussed. The experimental data are compared with the results of calculations carried out for a model of a discontinuity in an infinite layer.  相似文献   

19.
The problem of interaction of gas-dust flows with solid surfaces arose in connection with the study of the motion of aircraft in a dusty atmosphere [1–2], the motion of a gas suspension in power generators, and in a number of other applications [3]. The presence of a disperse admixture may lead to a significant increase in the heat fluxes [4] and to erosion of the surface [5]. These phenomena are due to the joint influence of several factors — the change in the structure of the carrier-phase boundary layer due to the presence of the particles, collisions of the particles with the surface, roughness of the ablating surface, and so forth. This paper continues an investigation begun earlier [6–7] into the influence of particles on the structure of the dynamical and thermal two-phase boundary layer formed around a blunt body in a flow. The model of the dusty gas [8] has an incompressible carrier phase. The method of matched asymptotic expansions [9] is used to obtain the equations of the two-phase boundary layer. In the frame-work of the refined classification made by Stulov [6], it is shown that the form of the boundary layer equations is different in the presence and absence of inertial precipitation of the particles. The equations are solved numerically in the neighborhood of the stagnation point of the blunt body. The temperature and phase velocity distributions in the boundary layer, and also the friction coefficients and the heat transfer of the carrier phase are found for a wide range of the determining parameters. In the case of an admixture of low-inertia particles that are not precipitated on the body, it is shown that even when the mass concentration of the particles in the undisturbed flow is small their accumulation in the boundary layer can lead to a sharp increase in the thermal fluxes at the stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1985.I thank V. P. Strulov for a discussion.  相似文献   

20.
Large-eddy simulation has been performed to investigate pilot-assisted pulverized-coal combustion in a weakly turbulent air jet. An advanced pyrolysis model, the chemical percolation devolatilization (CPD) model, has been incorporated into the LES framework to predict the local, instantaneous pyrolysis kinetics of coal particles during the simulation. Prediction on volatile species generation is thus improved, which provides an important initial condition for gas-phase volatile and solid-phase char combustion. For gas-phase combustion, the partially stirred reactor (PaSR) model is employed to model the combustion of volatile species, taking into account subgrid turbulence-chemistry interactions. For heterogeneous solid-phase char combustion, both the intrinsic chemical reaction on the internal surface of a char particle and the diffusion of gaseous oxidant through the film layer around the particle have been incorporated by using a kinetic/diffusion surface reaction model. The LES results show overall good agreements with experimental data. Sensitivity analysis has been performed to better understand the impact of parameter uncertainties on the LES results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号