首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对新设计的超临界翼型,采用风洞实验方法验证和评估了其气动特性。在增压连续式跨音速风洞(NF-6风洞)开展了超临界翼型跨音速特性的实验研究,验证了该翼型设计的压力分布曲线特点。激波位置和波后压力平台区长度表明设计结果和实验结果基本一致,揭示了超临界翼型跨音速的气动特性;阻力发散马赫数达到期望的设计指标,探讨了雷诺数对该翼型气动特性的影响。最后采用升华法实现了翼型表面流动特性的显示。结果表明转捩点约在16%弦长位置。  相似文献   

2.
用数值模拟手段详细地研究了振动翼型和襟翼的绕流问题,数值模拟的出发方程为Euler和N-S方程,格式为Bcam-Warming格式的改进型。数值实验主要针对流场的二大特性进行的,即振动对激波的影响和振动对分离的抑制作用,结果表明:(1)随翼型或襟翼的振动激波强度和位置也相应地变化但这一变化滞后于攻角的变化;(2)振幅加大激波强度的变化和激波运动范围也加大;(3)振动频率越高对激波的影响反而较低频时要小;(4)流动条件的不同可使升力回线的走向发生变化;(5)振动对分离有明显的抑制作用。  相似文献   

3.
The effect of background flow oscillations on a transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to the expansion and compression waves generated at the plate, the flow over the airfoil flow was drastically disturbed. This resulted in the presence of high intensity oscillations of a shock wave and a separation bubble on the suction surface of the airfoil. For relatively large values of the airfoil angle of attack, weak shock waves (transonic sound waves) were periodically shed upstream of the airfoil.This work was supported by Commission of the European Communities (Communit's Action for Cooperation in Science and Technology with Central and Eastern European Countries).The authors wish to thank Mr P. Koperski for his effective assistance in taking the photographs.  相似文献   

4.
A shock control channel (SCC) is a flow control method introduced here to control the shock wave/boundarylayer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. An SCC transfers an appropriate amount of mass and momentum from downstream of the shock wave location to its upstream to decrease the pressure gradient across the shock wave and as a result the shock-wave strength is reduced. Here, a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of the SCC. This flow control method is implemented on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using Roe’s averages scheme and a gradient-based adjoint algorithm is used to find the optimum location and shape of the SCC. The solver is validated against experimental works studying effect of cavities in transonic airfoils. It is shown that the application of an SCC improves the average aerodynamic efficiency in a range of off-design conditions by 13.2% in comparison with the original airfoil. The SCC is shown to be an effective tool also for higher angle of attack at transonic flows. We have also studied the SWBLI and how the optimization algorithm makes the flow wave structure and interactions of the shock wave with the boundary layer favorable.  相似文献   

5.
Interaction of a pulsed periodic source of energy with a closing shock wave arising near airfoils in transonic flight is studied. The evolution of the shock-wave structure of the flow around a symmetric airfoil is examined by solving two-dimensional unsteady gas-dynamic equations, and a resonant mechanism of interaction is found, which leads to considerable (by an order of magnitude) reduction of the wave drag of the airfoil.  相似文献   

6.
Changes in the structure of a transonic flow around a symmetric airfoil and a decrease in the wave drag of the latter, depending on the energy-supply period and on localization and shape of the energy-supply zone, are considered by means of the numerical solution of two-dimensional unsteady equations of gas dynamics. Energy addition to the gas ahead of the closing shock wave in an immediate vicinity of the contour in zones extended along the contour is found to significantly reduce the wave drag of the airfoil. The nature of this decrease in drag is clarified. The existence of a limiting frequency of energy supply is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 64–71, May–June, 2006.  相似文献   

7.
Both shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of SCB and suction and blowing. These flow control methods are used separately or together on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using Roe’s averages scheme and a gradient-based adjoint algorithm is used to find the optimum location and shape of all devices. It is shown that the simultaneous application of blowing and SCB (hybrid blowing/SCB) improves the average aerodynamic efficiency at off-design conditions by 18.2 % in comparison with the clean airfoil, while this increase is only 16.9 % for the hybrid suction/SCB. We have also studied the SWBLI and how the optimization algorithm makes the flow wave structure and interactions of the shock wave with the boundary layer favorable.  相似文献   

8.
翼型跨声速气动特性的不确定性及全局灵敏度分析   总被引:5,自引:0,他引:5  
针对马赫数和仰角的随机不确定性会导致气动性能波动的现象, 采用非嵌入式的混沌多项式方法对绕NACA0012 翼型跨声速随机气动特性进行不确定性及全局灵敏度分析. 具体分析了飞行状态的不确定性对气动载荷分布、流场及气动力系数的影响并通过全局灵敏度分析找出重要因素. 不确定性分析结果表明翼型上表面的激波以及激波后分离泡是造成气动性能剧烈波动的主要原因. 灵敏度分析结果表明在跨声速区域马赫数对激波处气动性能影响最大, 此外, 虽然马赫数和仰角相互耦合作用对气动力系数贡献比较小, 但对于激波位置处的流场, 这种互耦合作用不可忽略.   相似文献   

9.
贾勇  孙刚  刘苏 《力学季刊》2007,28(2):223-227
波阻是飞行器超音速飞行的关键设计因素,精确捕捉激波在流场中的位置,是数值模拟含激波流场和精确计算波阻的一个重要研究内容.本文基于网格节点有限体积空间离散方法,采用AUSM格式与FVS格式的混合格式(MAUSM方法)计算对流通量,从而抑制在数值模拟流场出现的激波处振荡和过冲现象,确保AUSM准确捕获接触间断的特性和FVS格式捕捉激波的能力.本文使用MAUSM方法分别计算了在跨声速和超声速条件下的NACA0012翼型流场,并与中心差分格式的计算结果进行比较.结果表明,对于存在激波的翼型流场,MAUSM方法是有效的.  相似文献   

10.
激波与物面边界层的干扰涉及可压缩流动的稳定性、转捩、分离等问题,直接影响到飞行器的阻力、表面热防护和飞行性能等工程技术问题。首先总结了前人对于激波与边界层的干扰所做的工作,之后重点研究和对比分析了超声速与跨声速流动中,正激波、斜激波以及头部激波对于飞行器层流和湍流边界层的干扰影响。激波强度的不同对边界层干扰作用不同,在强干扰情况下将会引起边界层分离和翼型失速。  相似文献   

11.
激波与物面边界层的干扰涉及可压缩流动的稳定性、转捩、分离等问题,直接影响到飞行器的阻力、表面热防护和飞行性能等工程技术问题。首先总结了前人对于激波与边界层的干扰所做的工作,之后重点研究和对比分析了超声速与跨声速流动中,正激波、斜激波以及头部激波对于飞行器层流和湍流边界层的干扰影响。激波强度的不同对边界层干扰作用不同,在强干扰情况下将会引起边界层分离和翼型失速。  相似文献   

12.
王娜  高超  张正科 《实验力学》2014,29(1):119-124
本文以RAE2822翼型前缘7%位置3mm宽的金刚砂粗糙带为例,研究了粗糙带破损对翼型压力分布的影响。实验结果表明:粗糙带破损会引起激波位置小幅移动,而对翼型后缘压力分布影响很小。当Ma=0.5时,粗糙带破损对升力系数的影响很小;在α≥4°以后粗糙带破损对阻力系数和俯仰力矩系数的影响逐渐增大,且破损位置距翼型中心对称面越远,影响越小。当Ma=0.75时,粗糙带破损对升力系数与阻力系数的影响直到α≥4°后开始逐渐增大,并且随着破损位置远离中心对称面而减弱;俯仰力矩系数对粗糙带破损较为敏感,且粗糙带破损的位置距离中心对称面越远、尺寸越小则影响越小。  相似文献   

13.
The shock wave structure in a diatomic gas is investigated using the direct statistical simulation (Monte-Carlo) method. The energy exchange between translational and rotational degrees of freedom (TR-exchange) is calculated by solving the dynamic problem of the interaction between rigid-rotator molecules within the framework of classical mechanics. The density profiles calculated are compared with the experimental data and on this basis the nitrogen rotational relaxation time is estimated. The possibility of using simplified intermolecular interaction models, namely, the variable-diameter sphere model employed together with a phenomenological consideration of the TR-exchange, is studied. Gasdynamic parameter profiles in the shock wave are analyzed. Simple approximations of the velocity gradient and translational and rotational temperature profiles are obtained on the basis of a parametric calculation of the shock wave structure. This makes it possible approximately to describe the gasdynamic parameter profiles in terms of elementary functions.  相似文献   

14.
在激波区使用自适应壁对跨音速翼型的激波/边界层的相互作用(干扰)进行控制,可改变机翼的气动性能,这种被动控制可通过在翼型的激波区开一凹腔,其上覆盖一弹性橡胶膜柔壁来,本文给出用Navier-Stoker方程数值模拟这一自适应控制翼型的跨音速粘性绕流,提出了一个适应于本特殊情况(物面边界局部地区在求解过程中有变化)的处理办法。并探讨了自适应柔壁对当代跨音速翼绕流的影响。  相似文献   

15.
This work experimentally visualizes the interaction of a quasi-one-dimensional moving shock wave with a two-dimensional vortex in a soap film for the first time. A vertical soap film shock tube was used to generate a quasi-one-dimensional moving shock wave and a NACA-0012 airfoil intruded into the soap film was towed to shed the starting vortex. The interesting interaction phenomena were then visualized using a traditional high-speed flash photography. The concentration of sodium dodecyl sulfate (SDS) used was 0.5 CMC (critical micelle concentration) to keep the surfactant molecules behave as two-dimensional gases. A sequence of pictures shows that the shock is distorted non-symmetrically as it passes through the spiral vortex flow field and the vortex structure is compressed in the direction normal to the shock. These flow features observed in soap films are qualitatively similar to their counterparts in gases. In addition, the visualization of the interactions of a quasi-one-dimensional moving shock wave with a Kármán vortex street are presented.   相似文献   

16.
A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.  相似文献   

17.
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the prac-ticability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disinte-grates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17%occurs with a triangular shape, while the max-imum increase in aerodynamic efficiency (lift-to-drag ratio) of around 10%happens with a rectangular shape at an angle of attack of 2.26?.  相似文献   

18.
Frequency lock-in phenomenon for oscillating airfoils in buffeting flows   总被引:3,自引:0,他引:3  
Navier-Stokes based computer simulations are conducted to determine the aerodynamic flow field response that is observed for a NACA0012 airfoil that undergoes prescribed harmonic oscillation in transonic buffeting flows, and also in pre-buffet flow conditions. Shock buffet is the term for the self-sustained shock oscillations that are observed for certain combinations of Mach number and steady mean flow angle of attack even in the absence of structural motion. The shock buffet frequencies are typically on the order of the elastic structural frequencies, and therefore may be a contributor to transonic aeroelastic response phenomena, including limit-cycle oscillations. Numerical simulations indicate that the pre-shock-buffet flow natural frequency increases with mean angle of attack, while the flow damping decreases and approaches zero at the onset of buffet. Airfoil harmonic heave motions are prescribed to study the interaction between the flow fields induced by the shock buffet and airfoil motion, respectively. At pre-shock-buffet conditions the flow response is predominantly at the airfoil motion frequency, with some smaller response at multiplies of this frequency. At shock buffet conditions, a key effect of prescribed airfoil motions on the buffeting flow is to create the possibility of a lock-in phenomenon, in which the shock buffet frequency is synchronized to the prescribed airfoil motion frequency for certain combinations of airfoil motion frequencies and amplitudes. Aerodynamic gain-phase models for the lock-in region, as well as for the pre-shock-buffet conditions are suggested, and also a possible relationship between the lock-in mechanism and limit-cycle oscillation is discussed.  相似文献   

19.
The Busemann-type supersonic biplane can effectively reduce the wave drag through shock interference effect between airfoils. However, considering the elastic property of the wing structure, the vibration of the wings can cause the shock oscillation between the biplane, which may result in relative aeroelastic problems of the wing. In this research, fluid–structure interaction characteristics of the Busemann-type supersonic biplane at its design condition have been studied. A theoretical two-dimensional structure model has been established to consider the main elastic characteristics of the wing structure. Coupled with unsteady Navier–Stokes equations, the fluid–structure dynamic system of the supersonic biplane is studied through the two-way computational fluid dynamics/computational structural dynamics (CFD/CSD) coupling method. The biplane system has been simulated at its design Mach number with different nondimensional velocities. Different initial disturbance has been applied to excite the system and the effects of the position of the mass center on the system’s aeroelastic stability is also discussed. The results reveal that the stability of the airfoil in supersonic biplane system is decreased compared with that of the airfoil isolated in supersonic flow and such stability reduction effect should be given due attention in practical design.  相似文献   

20.
超临界翼型风洞实验的侧壁干扰研究   总被引:1,自引:0,他引:1  
本文对模型周围的侧壁附面层抽吸,研究跨音速二元风洞的侧壁干扰。模型的展长大于风洞的宽度,其中央剖面有测压孔,在风洞实验段中可沿展向滑移,使测压剖面相对于风洞的对称平面的展向位置取不同的值。实验表明:在超临界情况,当对模型周围侧壁附面层进行抽吸时,气动力的展向均匀性改善,翼型上的激波向后移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号