共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
螺旋波等离子体化学气相沉积法制备纳米碳化硅薄膜 总被引:1,自引:0,他引:1
采用螺旋波等离子体化学气相沉积 (HWP-CVD)技术在Si(100)和石英衬底上合成了具有纳米结构的碳化硅薄膜.通过X射线衍射(XRD)、傅立叶红外透射(FTIR)和原子力显微镜(AFM)等技术对所制备薄膜的结构、组分和形貌进行了分析,利用光致发光技术研究了样品的发光特性.分析表明,在700℃的衬底温度和1.33Pa的气压条件下所制备纳米SiC薄膜的平均颗粒度在3nm以下,红外透射谱主要表现为Si-C吸收.结果说明HWP-CVD为制备高质量纳米SiC薄膜的有效技术,所制备样品呈现出室温短波长可见发光特性,发光谱主峰位于395nm附近. 相似文献
3.
采用热丝化学气相沉积(HWCVD)技术,以钨丝作为热丝,在不同热丝温度和氢稀释度下,分别在玻璃和单晶硅片衬底上沉积微晶硅(μc-Si∶H)薄膜材料.对所制备的微晶硅薄膜材料使用XRD、傅里叶变换红外吸收光谱、透射谱等进行结构与性能的表征分析.结果表明,随着热丝温度升高,氢稀释度变大,薄膜呈现明显的(220)择优生长取向,晶粒尺寸逐渐增大,光学吸收边出现红移,光学带隙逐渐变小.通过优化沉积参数,在热丝温度为1577℃、氢稀释浓度为95.2;、衬底温度为350℃,沉积速率为0.6 nm/s和沉积气压8 Pa条件下,制备的微晶硅薄膜呈现出了(220)方向的高度择优生长取向,平均晶粒尺寸为146 nm,光学带隙约为1.5 eV,光电导率σ.为3.2×10-6Ω-1·cm-1,暗电导率σrd为8.6×10-7 Ω-1·cm-1,表明制备的材料是优质微晶硅薄膜材料. 相似文献
4.
化学气相沉积金刚石薄膜生长动力学模型 总被引:3,自引:1,他引:2
基于金刚石薄膜气相生长的反应机理,提出了一个动力学模型;建立了描述金刚石生长与无离碳沉积相互竞争机制的动力学演化方程;通过讨论该动力学方程的稳态解,细致刻划了不同C/H泫比率条件下金刚石无序碳的竞争生长过程。 相似文献
5.
微波等离子体化学气相沉积金刚石薄膜研究 总被引:2,自引:1,他引:1
本文系统研究了石英钟罩式微波等离子体辅助化学气相沉积装置对沉积金刚石薄膜的影响。与石英管式微波等离子体沉积装置相比,该装置能使用较高的沉积气压、较大的气体流量和较微波功率。本文着重研究了沉积气压、气体流量和甲烷浓度对金刚石薄膜形貌和生长速度的影响。发生生长速度随着沉积气压和甲烷浓度的增大而增大,晶体形态随着甲烷浓度的增大而差。并使用该装置成功地在400℃低温沉积了Φ60mm的金刚石薄膜。 相似文献
6.
7.
8.
建立了多晶硅化学气相沉积反应的三维模型,同时考虑质量、能量和动量传递,利用CFD软件对炉内的流动、传热和化学反应过程进行了数值模拟,并分析了硅沉积速率、SiHC13转化率、硅产率以及单位能耗随H2摩尔分数的变化规律.结果表明:计算结果与文献数据吻合较好;随着硅棒高度的增加,硅沉积速率不断增大;最佳的进气H2摩尔分数范围为0.8 ~0.85. 相似文献
9.
化学气相沉积金刚石薄膜成核机理研究 总被引:10,自引:2,他引:8
本文综述了在化学气相沉积(Chemical Vapor Deposition,CVD)金刚石薄膜过程中非金刚石衬底表面金刚石成核机理研究进展。主要讨论了衬底表面缺陷诱导金刚石成核模型,指出最大原子团的存在决定了金刚石成核是否能够在衬底表面发生;分析了金刚石在非金刚石衬底成核时的过渡层问题,提出了过渡层存在机理;对于在等离子体CVD中的偏压增强金刚石成核效应,提出的负偏压离子流增强成核模型和正偏压电 相似文献
10.
11.
通过对化学气相沉积法合成的六角形石墨烯晶畴进行H2刻蚀,发现在铜衬底上合成的六角形石墨烯晶畴具有两种与降温过程有关的边缘刻蚀模式,揭示了在化学气相沉积的降温过程中石墨烯晶畴边缘形态的改变.利用原子力显微镜对石墨烯晶畴进行观测,证明了在降温过程中石墨烯晶畴的边缘发生弯曲,并且下沉到铜衬底中.通过改变刻蚀温度对石墨烯晶畴进行H2刻蚀,发现石墨烯晶畴的边缘在降温过程中的形态改变增强了铜衬底对其的保护作用,能够在一定温度范围内避免晶畴边缘发生H2刻蚀,同时,证明了刻蚀温度在石墨烯的H2刻蚀过程中起着非常重要的作用,当刻蚀温度过高,铜衬底对石墨烯晶畴边缘的保护作用减弱,晶畴发生边缘刻蚀现象.本文首次证明了石墨烯晶畴的边缘刻蚀与化学气相沉积的降温过程和刻蚀温度有密切关系,进一步阐明了化学气相沉积法合成的石墨烯的生长和刻蚀机理. 相似文献
12.
13.
14.
15.
β-Ga2O3纳米线是一种新型具有强发光特性的宽带隙半导体材料,作为探测器性能稳定巨可靠,近年来受到了极大的关注.本文主要采用化学气相沉积法(CVD),以Ag纳米颗粒为催化剂,在Si(100)衬底上生长了β-Ga2O3纳米线,经EDS、SEM、TEM等技术表征,证明其大部分遵循VLS生长机理,少许遵循VS机制.其中遵循 VLS 生长机制的β-Ga2O3纳米线更细更长,其形貌均匀一致,长度约为230~260 μm,直径约为150~180 nm,巨Ag颗粒皆在纳米线顶部. 相似文献
16.
氧分压对化学气相沉积法合成ZnO纳米结构形貌的影响 总被引:1,自引:1,他引:1
本文利用化学气相沉积(CVD)法在镀有Au(10 nm)膜的单晶Si(100)上制备了ZnO薄膜,并研究了不同的氧分压对ZnO形貌的影响.借助扫描电镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对样品的形貌、结晶质量和晶体生长取向进行了表征.结果表明:当O2分压较小的时候,O2只能与Zn团簇的某些界面发生反应并逐渐结晶生成层状的ZnO微米团簇.当 O2分压较大的时候,ZnO通过二次生长形成由微米柱阵列和表面无序纳米线构成的分层复合结构,并且表面纳米线的密度随着氧分压的增加而增加.高分辨透射电镜(HRTEM)和选取电子衍射(SAED)分析表明,单根纳米线是沿[001]方向生长的ZnO单晶. 相似文献
17.
18.
19.
自2002年世界上第一颗采用化学气相沉积(CVD)方法制备的大尺寸金刚石单晶被报道之后,碳材料领域在世界范围内再一次掀起了CVD金刚石的研究热潮,单晶CVD金刚石也成为与石墨烯研究热度相当的又一种碳材料。几乎同时,将这种优异的材料在各个可能的相关领域进行应用的研究也随之被广泛地开展起来,这些研究工作逐渐表明:在新世纪单晶CVD金刚石将在能源、太空、信息等领域得到广泛的应用,其对社会生活、国家安全和科技进步将产生巨大的影响。本文在结合我们自己的工作基础上,综述了国内、外在单晶CVD金刚石制备领域的进展及其在粒子探测器件领域的应用。 相似文献
20.
碳化硅(SiC)是制作高温、高频、大功率电子器件的理想电子材料,近20年来随着外延设备和工艺技术水平不断提升,外延膜生长速率和品质逐步提高,碳化硅在新能源汽车、光伏产业、高压输配线和智能电站等领域的应用需求越来越大。与硅半导体产业不同,碳化硅器件必须在外延膜上进行加工,因此碳化硅外延设备在整个产业链中占据承上启下的重要位置,而且也是整个产业链中最复杂、最难开发的设备。本文从碳化硅外延生长机理出发,结合反应室设计和材料科学的发展,介绍了化学气相沉积(CVD)法碳化硅外延设备反应室、加热系统和旋转系统等的技术进展,最后分析了CVD法碳化硅外延设备未来的研究重点和发展方向。 相似文献