首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of nucleation site size and density for Au catalyst-driven growth of GaN nanowires is reported. By using initial Au film thicknesses of 15-50 Å we have shown that annealing between 300 and 900 °C creates Au cluster size in the range 30-100 nm diameter with a cluster density from 300 to 3500 μm−2.Conventional optical lithography to create parallel Au stripes shoes that a minimum separation of ∼15 μm is needed to avoid overlap of wires onto neighboring lines with our growth conditions that yield wires of this same length. The GaN nanowires exhibit strong band-edge photoluminescence and total resistances of 1.2 × 108-5.5 × 106 Ω in the temperature range from 240 to 400 K, as determined for the temperature-dependent current-voltage characteristics.  相似文献   

2.
Diverse nanowires (NWs) activating the self-scrolling of planar graphene (GN) nanoribbons have been studied by using molecular dynamics (MD) simulations. Once the NWs’ radiuses reach a threshold, all the seven NWs, acting as an external force, can initiate the conformational change of the GN nanoribbons, and finally form the core/shell composite NWs. Our simulation found that van der Waals (vdW) force plays an important role in the process of forming core/shell composite NWs. This preparation method of the core/shell composite NWs will open a further development of a broad new class of metal/GN core/shell composite NWs with enhanced properties. And these core/shell structures can be the building blocks of functional nanodevices with unique mechanical, electrical, or optical properties.  相似文献   

3.
A two-step approach for macro-synthesis of GaN nanowires was developed in this study. GaN nanoparticles were firstly synthesized through a facile solid-state reaction using an organic reagent dicyandiamide (C2N4H4) and Ga2O3 as precursors. Subsequently, single-crystalline wurtzite GaN nanowires were grown on gold-coated 6H-SiC substrates via novel pulsed electron deposition (PED) technique using the as-prepared GaN nanoparticles as target, which provides a new route employing nanoparticles as precursors to fabricate GaN nanowires. It is found that pulsed electron ablation induced Ga and N plasma directly towards the gold-coated substrate to initialize the vapor-liquid-solid (VLS) growth processes. The morphological and structural properties were investigated in detail and Raman scattering spectrum of these nanowires presented some new features.  相似文献   

4.
The first-principles calculations have been performed to understand the origin of magnetism in undoped GaN thin films. The results show that Ga vacancy, rather than that of N contributes the observed magnetism, and the magnetic moments mainly come from the unpaired 2p electrons at nearest-neighbor N atoms of the Ga vacancy. Calculations and discussions are also extended to bare and passivated GaN nanowires, We find that per Ga vacancy on the surface sites products the total magnetic moment of 1.0  while that inside of the nanowires can lead to the formation of a net moment of 3.0 . The coupling between two Ga vacancies is also studied and we found that the coupling is ferromagnetic coupling. The surface passivation with hydrogen is shown to strongly enhance the ferromagnetism. Our theoretical study not only demonstrates that GaN nanowire can be magnetic even without transition-metal doping, but also suggests that introducing Ga vacancy is a natural and an effective way to fabricate low-dimensional magnetic GaN nanostructures.  相似文献   

5.
We report a systematic study of the electromechanical properties of graphene films for flexible transparent conducting electrodes. The flexibility of graphene films, which were grown using a chemical vapor deposition (CVD) method and transfer process on polyethylene terephthalate (PET) substrates, was investigated using a lab-made inner/outer bending, twisting and stretching test system. The electromechanical properties as a function of the change of bending radius, twisting angle and strain distance were evaluated by measuring the change in resistance. The change in resistance during the inner bending test was less than 8% even when the bending radius was 3 mm. Additionally, the results of the inner bending fatigue test showed a constant resistance throughout 2000 bending cycles. However, in the outer bending test, the resistance increased substantially when the bending radius was smaller than 10 mm. Therefore, we can expect that more cracks form between the grains of graphene during the outer bending test. The twistability and stretchability of the graphene film were also investigated. Both twisting and stretching tests show gradually increasing resistances according to the twisting angle and stretching distance. These results provide useful information regarding the electromechanical properties of graphene transparent conducting films for the development of flexible electronics.  相似文献   

6.
This paper presents the investigation of the properties of GaN nanowires synthesized from Ni-catalyzed chemical vapour deposition method under various growth temperatures. The influence of the growth temperatures on the morphological, structural and optical characteristics of the synthesized GaN nanowires was investigated in this work. Field-emission scanning electron microscopy images revealed that the 950 °C was the optimal growth temperature for synthesizing uniform, straight and smooth morphology of GaN nanowires. X-ray diffraction results demonstrated that the synthesized low dimensional GaN structures have the hexagonal wurtzite structure. Ultraviolet and blue emissions were detected from photoluminescence measurements. In addition, phonon replicas with the energy separation of 90 meV have been observed at the lower energy of the blue emission region in photoluminescence spectra.  相似文献   

7.
We demonstrate the high potential of GaN nanowires (NWs) to convert mechanical energy into electric energy. Using an atomic force microscope equipped with a Resiscope module, an average output voltage of –74 mV and a maximum of –443 mV ± 2% per NW were measured. This latter value is the highest reported so far for GaN NWs. By considering these output signals, we have estimated an average and a maximum power density generated by one layer of GaN NWs of the order of 5.9 mW/cm2 and 130 mW/cm2, respectively. These results offer promising prospects for the use of GaN NWs for high‐efficiency ultracompact piezogenerators. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
GaN nanowires were studied as a possible candidate for use in the future development of X-ray scintillator detectors with high spatial resolution using a Monte Carlo simulation. The assessment was performed from the optical response perspective. The ability of such a nanowire to act as scintillating fibers was simulated using Geant4 code. The optimal dimensions of the nanowire (considering practical limitations) to achieve the best optical guiding effect were also determined. Moreover, the energy response of the nanowire was investigated for the design of a suitable external photodetector. To more accurately study the proposed structure, a scintillating screen containing approximately 2,000,000 nanowires was simulated in a porous anodized alumina membrane (PAAM) with a hexagonal arrangement. Using these specifications, the spatial resolution and efficiency of the detector were precisely calculated. The results showed that the spatial resolution and efficiency of the detector were <1 μm and ∼17%, respectively.  相似文献   

9.
基于范德瓦耳斯外延生长的氮化镓/石墨烯材料异质生长界面仅靠较弱的范德瓦耳斯力束缚,具有低位错、易剥离等优势,近年来引起了人们的广泛关注.采用NH_3/H_2混合气体对石墨烯表面进行预处理,研究了不同NH_3/H_2比对石墨烯表面形貌、拉曼散射的影响,探讨了石墨烯在NH_3和H_2混合气氛下的表面预处理机制,最后在石墨烯上外延生长了1.6μm厚的GaN薄膜材料.实验结果表明:石墨烯中褶皱处的C原子更容易与气体发生刻蚀反应,刻蚀方向沿着褶皱进行;适当NH_3/H_2比的混合气体对石墨烯进行表面预处理可有效改善石墨烯上GaN材料的晶体质量.本研究提供了一种可有效提高GaN晶体质量的石墨烯表面预处理方法,可为进一步研究二维材料上高质量的GaN外延生长提供参考.  相似文献   

10.
The GaN thick films have been grown on porous GaN template and planar metal-organic chemical vapor deposition(MOCVD)-GaN template by halide vapor phase epitaxy(HVPE). The analysis results indicated that the GaN films grown on porous and planar GaN templates under the same growth conditions have similar structural, optical, and electrical properties. But the porous GaN templates could significantly reduce the stress in the HVPE-GaN epilayer and enhance the photoluminescence(PL) intensity. The voids in the porous template were critical for the strain relaxation in the GaN films and the increase of the PL intensity. Thus, the porous GaN converted from β-Ga2O3 film as a novel promising template is suitable for the growth of stress-free GaN films.  相似文献   

11.
<正>Sodium beta-alumina(SBA) is deposited on AlGaN/GaN by using a co-deposition process with sodium and Al2O3 as the precursors.The X-ray diffraction(XRD) spectrum reveals that the deposited thin film is amorphous.The binding energy and composition of the deposited thin film,obtained from the X-ray photoelectron spectroscopy(XPS) measurement,are consistent with those of SBA.The dielectric constant of the SBA thin film is about 50.Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN.The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor(MISHEMT) is measured to be(3.5~9.5)×1010 cm-2·eV-1 by the conductance method.The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2.Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electronmobility transistor(MESHEMT),the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However,the threshold voltage of the AlGaN/GaN MISHEMT using SBA as the gate dielectric shifts positively from—5.5 V to—3.5 V.From XPS results,the surface valence-band maximum(VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition.The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF),the reduction of interface traps and the effects of sodium ions,and/or the fixed charges in SBA on the two-dimensional electron gas(2DEG).  相似文献   

12.
This paper presents the manufacturing of GaN membrane supported F-BAR structures. The 2.2 μm thick GaN layer was grown using MOCVD techniques on a high-resistivity 111-oriented silicon substrate. Conventional contact lithography, electron-gun Ti/Au evaporation and lift-off techniques were used to define top-side metallization of the the FBAR structures. Bulk micromachining techniques were used for the release of the GaN membrane. The bottom-side metallization of the micromachined structure was obtained by means of sputtered gold. S-parameter measurements have shown a pronounced resonance around 1.2 GHz. The extracted value of acoustic velocity is in good agreement with those reported by other authors on materials fabricated by other methods. The demonstrated FBAR function in epitaxially grown GaN layers opens new avenues for a low-cost monolithic integration with GaN-based electronics and sensing devices.  相似文献   

13.
Molecular dynamics simulations demonstrate that metallic nanowires (NWs) can activate and guide the self-assembly of graphene nanoribbon rings (GNR), allowing them to adopt a bilayered helical configuration on NWs. This unique technology attributes to the combined effects of the van der Waals force and the π–π stacking interaction. The size and chirality effects of GNR on the self-assembly of GNR–NW system are calculated. Diverse NWs, acting as an external force, can initiate the conformational change of the GNRs to form bilayered helical structures. The stability of the formed nanosystems is further analyzed for numerous possible applications.  相似文献   

14.
GaN nanowires were successfully synthesized at high quality and large yield on Si (1 1 1) substrate through ammoniating Ga2O3/BN films deposited by radio frequency (RF) magnetron sputtering system. X-ray diffraction (XRD), Fourier transformed infrared spectra (FTIR) and selected-area electron diffraction (SAED) confirm that the as-synthesized nanowires are of a hexagonal GaN with wurtzite structure. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the nanowires have a straight and smooth curved structure with extremely uniform diameter of about 60 nm, which is helpful to the application of GaN nanowires. The present results demonstrate that the BN is a very important intermedium in the growth of GaN nanowires by this method.  相似文献   

15.
The hydrothermal epitaxy of ZnO films on a patterned GaN layer with a honeycomb etching hole array is demonstrated. Through m-planes of the GaN layer exposed on the vertical walls of the etching holes, highly crystalline ZnO films via multiple lateral growth stages can be realized. It is found that higher concentrations of zinc nitrate hexahydrate (ZNH) and hexamethylenetetramine (HMT) in hydrothermal solution yield a larger number of ZnO molecules to speed up ZnO growth during the initial stage of hydrothermal growth, also create secondary crystals and initialize further lateral growth stages to bridge neighboring ZnO prisms after smooth surfaces formed on the m-plane of a ZnO prism. A successive lateral growth mechanism that strongly depends on ZNH and HMT concentrations in the hydrothermal solution is proposed and discussed.  相似文献   

16.
GaN films have been grown on porous silicon at high temperatures (800-1050 °C) by metal organic vapor phase epitaxy. The optical properties of GaN layers were investigated by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. PL spectra recorded at 5 K exhibit excitonic emissions around 3.36-3.501 eV and a broad yellow luminescence at 2.2 eV. CL analysis at different electron excitation conditions shows spatial non-uniformity in-depth of the yellow and the band-edge emissions. These bands of luminescence are broadened and red- or blue-shifted as the electron beam penetrates in the sample. These behaviors are explained by a change of the fundamental band gap due to residual strain and the local thermal effect. It was found that the use of AlN buffer layer improves the crystalline quality and the luminescence property of GaN.  相似文献   

17.
Gallium nitride (GaN) nanowires grown on nickel-coated n-type Si (1 0 0) substrates have been synthesized using chemical vapor deposition (CVD), and the field emission properties of GaN nanowires have been studied. The results show that (1) the grown GaN nanowires, which have diameters in the range of 50-100 nm and lengths of several micrometers, are uniformly distributed on Si substrates. The characteristics of the grown GaN nanowires have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM), and through these investigations it was found that the GaN nanowires are of a good crystalline quality (2) When the emission current density is 100 μA/cm2, the necessary electric field is an open electric field of around 9.1 V/μm (at room temperature). The field enhancement factor is ∼730. The field emission properties of GaN nanowires films are related both to the surface roughness and the density of the nanowires in the film.  相似文献   

18.
Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.  相似文献   

19.
准确预测GaN半导体材料的热导率对GaN基功率电子器件的热设计具有重要意义.本文基于第一性原理计算和经典Debye-Callaway模型,通过分析和完善Debye-Callaway模型中关于声子散射率的子模型,建立了用于预测温度、同位素、点缺陷、位错、薄膜厚度、应力等因素影响的GaN薄膜热导率的理论模型.具体来说,对声...  相似文献   

20.
利用Raman散射谱研究了GaN注Er以及Er+O共注样品的振动模,并讨论了共注入O对Er离子发光的影响. 在Raman散射谱中,对于注Er的GaN样品出现了300 cm-1和670 cm-1两个新的Raman峰,而对于Er+O共注样品,除了上述两个峰外,在360 cm-1处出现了另外一个新的峰,其中300 cm-1峰可以用disorder-activated Raman scattering (DARS)来解释,670 cm-1峰是由于与N空位相关的缺陷引起的,而360 cm-1峰是由O注入引起的缺陷络合物产生的. 由于360 cm-1模的缺陷出现,从而导致Er+O共注入GaN薄膜红外光致发光(PL)强度的下降. 关键词: GaN Er Raman散射 光致发光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号