首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have fabricated indium–gallium–zinc (IGZO) thin film transistor (TFT) using SiOx interlayer modified aluminum oxide (AlOx) film as the gate insulator and investigated their electrical characteristics and bias voltage stress. Compared with IGZO-TFT with AlOx insulator, IGZO-TFT with AlOx/SiOx insulator shows superior performance and better bias stability. The saturation mobility increases from 5.6 cm2/V s to 7.8 cm2/V s, the threshold voltage downshifts from 9.5 V to 3.3 V, and the contact resistance reduces from 132 Ωcm to 91 Ωcm. The performance improvement is attributed to the following reasons: (1) the introduction of SiOx interlayer improves the insulator surface properties and leads to the high quality IGZO film and low trap density of IGZO/insulator interface. (2) The better interface between the channel and S/D electrodes is favorable to reduce the contact resistance of IGZO-TFT.  相似文献   

2.
《Current Applied Physics》2010,10(5):1302-1305
Bottom-contact (BC) copper phthalocyanine (CuPc) thin film transistor with UV/ozone treated Au as a source/drain electrode was fabricated and the contact resistance was estimated from the transmission line method (TLM). Comparing the properties of OTFT with untreated Au electrode, the performance of the BC CuPc-TFT with the UV/ozone treated Au electrodes was significantly improved: saturation mobility increased from 4.69 × 10−3 to 2.37 × 10−2 cm2/V s, threshold voltage reduced from −29.1 to −6.4 V, and threshold swing varied from 5.08 to 2.25 V/decade. The contact resistance of the device with UV/ozone treated Au electrodes was nearly 20 times smaller than that of the device with untreated Au electrodes at the gate voltage of −20 V. This result indicated that using the UV/ozone treated Au electrode is an effective method to reduce the contact resistance. The present BC configuration with UV/ozone treated Au electrodes could be a significant step towards the commercialization of OTFT technology.  相似文献   

3.
Xiqu Chen  Jun Dai 《Optik》2010,121(16):1529-1533
An optical switch is fabricated by using micromachining technology, which is based on thin nanocrystalline vanadium oxide (VOx) film, and it consists of four layers: a silicon (Si) substrate layer, a VOx layer, a Si3N4 buffer layer, and an aurum (Au) electrode layer. By applying a switching power supply to a pair of the Au electrodes, the optical switch is controlled to exhibit from an “on” state with semi-conducting phase to an “off” state with metallic phase. The optical switch performance is investigated, and testing results show that its extinction ratio is about 14 dB, its switching response time can achieve about 1.5 ms, and the power dissipation required for stimulating switching to work can be below about 15 mW at least, which is lower than the power dissipation of conventional optical switches based on microstructure thin vanadium dioxide (VO2) films. This kind of optical switch is potential to be applied as optical switch for optical communication.  相似文献   

4.
This work is dedicated to the study of electronic-beam (e-beam) evaporated titanium oxide (TiOx) contact for polycrystalline silicon hetero-junction solar cells. A TiOx material obtained by e-beam evaporation method is suggested as a possible alternative to the atomic layer deposition (ALD) process. The purpose is to achieve corresponding passivation efficiency between e-beam evaporation of TiOx and the ALD method. However, the TiOx in question achieved a relatively low passivation performance of Seff = 113 cm−1 in comparison to the reported ALD results. Nonetheless, as e-beam evaporation is well-established and an environmentally friendly deposition technology, e-beam evaporated TiOx passivation layer has potential for improvement. What is clearly demonstrated in our work is how such an improvement in contact resistance dropped from >55 Ω/cm2 to 2.29 Ω/cm2. Indeed, our study established a correlation between the main process parameters of e-beam evaporation and their influence on the quality of electron selective TiOx layer. Moreover, we reveal a possible scenario for the implementation of e-beam evaporated Titanium oxide as electron selective contact for asymmetrical hetero-junction solar cells.  相似文献   

5.
In this work, we present the performance improved InGaZnO thin film transistors by inserting low temperature processed 10 nm thick SiOCH buffer layers between SiNx insulator and InGaZnO channel layer. The influences of oxygen flow rate during the deposition of SiOCH buffer layer have been intensively investigated. Basing on the analysis of hall effect measurement and Fourier transform infrared spectrum, the SiOCH buffer layer can effectively increase the carrier concentration of the channel layer by the hydrogen doping due to re-sputtering and diffusion effect. The InGaZnO thin film transistor with buffer layer exhibits an enhanced performance with mobility of 13.09 cm2/vs, threshold voltage of −0.55 V and Ion/Ioff over 106.  相似文献   

6.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

7.
The class of sodium salts of sulphonated metal phthalocyanines (MePCS x , S = SO3Na, x=1–4) was investigated as a p-type channel component in organic field-effect transistors (OFETs). The solubility of these materials appears to be enhanced compared to their non-sulphonated counterparts (MePCs). We fabricated transistors based on MePCS x varying the central metal atom (Me = Ni, Co, Zn, Al) and we evaluated the dependence of transistor performance on the nature of the central atom and the degree of sulphonation. The best results were obtained in the case of Ni and low sulphur content. In this case the mobility value is μ=1.08 cm2 V−1 s−1 and the on/off current ratio ∼103. The degree of sulphonation affects the electric field inside the active film in a way analogous to the case of polyelectrolyte-gated OFETs. The Na+ counter ions present in the channel contribute to the device characteristics but their concentration should be controlled in order to optimize device performance.  相似文献   

8.
We have investigated the role of the metal/oxide junction interface on the resistive switching (RS) characteristics in WO3+x films. The WOx films are fabricated on Pt substrates by magnetron sputtering at room temperature. Top metal contact (Au or Al) is fabricated by using thermal evaporator. The thicknesses of WOx films and top electrodes are 1 μm and 200 nm, respectively. It has been found that the bi-polar RS direction is dependent on the choice of top metal electrode, Au or Al. The sample with a Au top electrode shows clockwise (CW) RS mode whilst the sample with a Al top electrode shows counter-clockwise (CCW) RS mode. The on/off ratio is 10 times for Au/WOx/Pt and 100 times for Al/WOx/Pt. The bi-polar RS modes are modeled in terms of the difference in the electronegativity of the top and bottom electrodes.  相似文献   

9.
The high contact resistance of organic thin film transistors (OTFTs), due to the work function difference between metal electrode and organic channel, seriously decreases the electrical properties. Graphene electrode could reduce the contact resistance and improve the electrical performance of OTFTs. However, the high chemical vapor deposition (CVD) temperature (900–1000 °C) limits the available OTFT substrate in the case of direct graphene growth on S/D metal electrodes. Furthermore, the application of a transferred graphene electrode induces significant problems due to the transfer process. In this work, thin graphite sheet was directly grown on a metal electrode by the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method at as low temperature as 400, 500 °C. We show that OFETs with thin graphite sheet/metal, grown at 400, 500 °C, exhibit much lower contact resistance than OFETs with metal-only electrode.  相似文献   

10.
《Current Applied Physics》2018,18(7):834-842
In this work, the specific contact resistance (ρc) between amorphous indium-gallium-zinc-oxide (IGZO) semiconductor and different contact electrodes was obtained from thin film transistors (TFTs). Ti/Au (10/100 nm), aluminum doped zinc oxide (AZO, 100 nm) and indium tin oxide (ITO, 100 nm) were used as source/drain electrodes to fabricate IGZO TFTs. Chemical states of the contacts/semiconductor interfaces were examined by depth profile X-ray photoelectron spectroscopy (XPS) analysis to explain the origin of the differences on specific contact resistance. The lowest ρc achieved using Ti/Au was related to the formation of a TiOx interlayer due to oxygen atoms diffusing out from the semiconductor under layer, increasing the carrier concentration of IGZO at the interface and lowering the ρc. On the contrary, no interfacial reactions were observed between IGZO and AZO or ITO source/drain. However, IGZO resistivity increased with ITO contacts likely due to oxygen vacancies filling during ITO deposition. This fact seems to be the origin of the high contact resistance between IGZO and ITO, compared to IGZO-AZO and IGZO-Ti/Au interfaces.  相似文献   

11.
Hall mobility and major scattering mechanisms in surface and buried MBE grown strained InGaSb quantum well (QW) MOSFET channels with in‐situ grown Al2O3 gate oxide are analyzed as a function of sheet hole density, top‐barrier thickness and temperature. Mobility dependence on Al0.8Ga0.2Sb top‐barrier thickness shows that the relative contribution of interface‐related scattering is as low as ~30% in the surface QW channel. An InAs top capping layer reduces the interface scattering even further; the sample with 3 nm total top‐barrier thickness demonstrates mobility of 980 cm2/Vs giving sheet resistance of 4.3 kΩ/sq, very close to the minimum QW resistance in the bulk. The mobility–temperature dependences indicate that the interface‐related scattering is dominated by remote Coulomb scattering at hole densities <1 × 1012 cm–2. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We demonstrated the tunable contact resistance in pentacene thin film transistor (TFT) by inserting an organic-inorganic hybrid interlayer between Au electrode and pentacene layer. The contact resistance of pentacene-TFT varies with concentration of pentacene-TFT varies with concentration of MoOx in organic-inorganic hybrid interlayer. MoOx in organic-inorganic hybrid interlayer. The contact resistance of the device with 55 wt% MoOx doped pentacene interlayer is about 7.8 times smaller than that of device without interlayer at the gate voltage of −20 V. Comparing the properties of pentacene-TFT without interlayer, the performance of the pentacene-TFT with 55 wt% MoOx doped pentacene was significantly improved: saturation mobility increased from 0.39 to 0.87 cm2/V s, threshold voltage reduced from −21.3 to −7.2 V, and threshold swing varied from 3.75 to 1.39 V/dec. Our results indicated that the organic-inorganic hybrid interlayer is an effective way to improve the performance of p-channel OTFTs.  相似文献   

13.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

14.
《Current Applied Physics》2020,20(10):1118-1124
The performance of ultra-thin Au–Ag–Au tri-layer film deposited thermally over a flexible substrate is investigated using structural, optical, mechanical and electrical-transport measurements. The optimum total thickness of the tri-layer for high transparency and conductivity is determined to be around 8 nm using a theoretical model. The Au–Ag–Au tri-layer shows maximum transmittance (≅ 62%) at wavelength 500 nm. XRD pattern shows peak corresponding to (111) plane of Au and/or Ag. Sheet resistance (≅ 10.42 Ω/□) measured at 300 K using four probe technique is stable up to 150 °C. Hall effect measurements show high conductivity (1.34 × 105 (Ω cm)−1), carrier concentration (2.48 × 1023/cm3), and mobility (3.4 cm2/Vs). Scotch tape test confirms good adhesion of the film onto PET substrate. Bending-twisting tests using an indigenous apparatus indicate high resistance-stability even after 50,000 cycles. These results imply the viability of Au–Ag–Au tri-layer film as a transparent conducting electrode worth exploring for optoelectronic applications.  相似文献   

15.
《Current Applied Physics》2018,18(2):231-235
We present the fabrication and analysis of Passivated Emitter and Rear Totally Diffused (PERT) solar cells on n-type silicon using a co-diffusion process. In a single high temperature step, a BSG/SiOx stack deposited by APCVD and a POCl3 back surface field diffuse into the wafer to form the boron doped emitter and phosphorus doped back surface field. The SiOx layer on top of BSG acts as a masking layer to prevent cross-doping of phosphorus as well as a blocking layer for boron out-diffusion. This resulted in an initial sheet resistance of 76 Ω/□ with good uniformity and a final p+ emitter sheet resistance of 97 Ω/□ after boron rich layer removal. Additionally, bulk lifetime was investigated before and after the high temperature step that resulted in an increase from 1.2 ms to 1.5 ms due to a POCl3 gettering effect. A peak cell efficiency of 20.3% was achieved and each recombination component in terms of saturation current density was calculated and analyzed to understand the cell for further efficiency enhancement.  相似文献   

16.
李红  甘至宏  刘星元 《发光学报》2014,35(2):238-242
采用EuF3薄层修饰低功函数金属Ag源、漏电极,制备了CuPc有机场效应晶体管,研究了不同厚度EuF3对器件性能的影响。结果表明,EuF3的厚度由0 nm增至0.6 nm时,接触电阻由23.65×105 Ω·cm减 至3.86×105 Ω·cm,使得器件载流子迁移率由1.5×10-3 cm2·V-1·s-1提高到4.65×10-3 cm2·V-1·s-1。 UPS测试结果表明,薄层EuF3在Ag与有机半导体间形成了界面偶极势垒,使源漏电极表面功函数增大,空穴注入势垒降低,Ag电极与有机半导体层界面的接触电阻减小,进而提升了空穴的注入效率。  相似文献   

17.
Superstrate-type Cu(In,Ga)Se2 (CIGS) thin film solar cells were fabricated using Zn1−xMgxO buffer layers. Due to the diffusion of Cd into CIGS during the growth of the CIGS layer, the conventional buffer material of CdS is not suitable. ZnO is a good candidate because of higher thermal tolerance but the conduction band offset (CBO) of ZnO/CIGS is not appropriate. In this study, the Zn1−xMgxO buffer layers were used to fulfill both the requirements. The superstrate-type solar cells with a soda-lime glass/In2O3:Sn/Zn1−xMgxO/CIGS/Au structure were fabricated with different band gap energies of the Zn1−xMgxO layer. The CIGS layers [Ga/(In + Ga)∼0.25] were deposited by co-evaporation method. The substrate temperature during the CIGS deposition of 450 °C did not cause the intermixing of the Zn1−xMgxO and CIGS layers. The conversion efficiency of the cell with Zn1−xMgxO was higher than that with ZnO due to the improvement of open-circuit voltage and shunt resistance. The results well corresponded to the behavior of the adjustment of CBO, demonstrating that the usefulness of the Zn1−xMgxO layer for the CBO control in the superstrate-type CIGS solar cells.  相似文献   

18.
In this study, the influence of the surface layer (p-InGaN or p-GaN) capping p-InGaN/p-GaN superlattices (SLs) on the contact to p-type GaN was investigated. It was found that the specific contact resistance (ρc)(ρc) to p-type GaN is lower when using p-InGaN as the surface layer. The lowest value of ρcρc was 1.99×10−4 Ω cm2 at room temperature. It was also found that low temperature growth of the p-GaN layers in the SLs is beneficial for lowering the ohmic contact resistance. Unlike Ni/Au deposited directly on p-GaN (without the strained p-InGaN/p-GaN SLs), Ni/Au deposited on p-InGaN/p-GaN SLs produces ohmic behavior even before annealing.  相似文献   

19.
The effect of indium-tin oxide (ITO) surface treatment on hole injection of devices with molybdenum oxide (MoO3) as a buffer layer on ITO was studied. The Ohmic contact is formed at the metal/organic interface due to high work function of MoO3. Hence, the current is due to space charge limited when ITO is positively biased. The hole mobility of N, N′-bis-(1-napthyl)-N, N′-diphenyl-1, 1′biphenyl-4, 4′-diamine (NPB) at various thicknesses (100–400 nm) has been estimated by using space-charge-limited current measurements. The hole mobility of NPB, 1.09×10−5 cm2/V s at 100 nm is smaller than the value of 1.52×10−4 cm2/V s at 400 nm at 0.8 MV/cm, which is caused by the interfacial trap states restricted by the surface interaction. The mobility is hardly changed with NPB thickness for the effect of interfacial trap states on mobility which can be negligible when the thickness is more than 300 nm.  相似文献   

20.
Vanadium oxide VOx films were fabricated by RF magnetron sputtering on various metal buffer layers or silica glass substrates at a substrate temperature of 400 °C. V2O5 film was fabricated on a silica glass substrate, and VO2 films were fabricated on V, W, Fe, Ni, Ti, and Pt metal buffer layers. The transition temperature of the sample on the V buffer layer was 68 °C and that on the W buffer layer was 53 °C. The VO2 film was also fabricated on the V buffer layer by non-reactive sputtering using a V2O5 target at a substrate temperature of 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号