首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional (3D) elastic–plastic finite element analyses (FEA) are performed to study constraint effect on the crack-front stress fields for single-edge notched bend (SENB) specimens. Both rectangular and square cross-section of the specimens with a deep crack of a/W=0.5 are considered to investigate the effect of specimen size. A square-cross-section specimen with a shallow crack of a/W=0.15 is also considered to examine the effect of crack depth. Stresses from FEA at the crack front on different planes of the specimen are compared with those determined by the JA2 three-term solution. Results show that in-plane stress fields can be characterized by the three-term solution throughout the thickness even in the region near the free surface. Cleavage fracture toughness data is compared to predict the effects of specimen size and crack depth on fracture behavior. It is found that the distributions of crack opening stress are nearly the same for the SENB specimens at the critical J which is consistent with the RKR model. Furthermore our results indicate that there is a distinct relationship between the crack-front constraint and the cleavage fracture toughness. By introducing the failure curves, the minimum fracture toughness and scatter band can be well captured using the JA2 approach.  相似文献   

2.
A solution for Model-I plane strain crack tip fields in a bi-linear elastic–plastic material is presented. The elastic–plastic Poisson's ratio is introduced to characterize the influence of elastic deformation on the near tip constraint. Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the analytical solution and good agreement between them is found. It is seen that the present solution with T-stress can properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is established between the critical value of J-integral, Jc, and T-stress for elastic–plastic fracture.  相似文献   

3.
Brittle fracture in ceramics sometimes occurs under combined opening-sliding (or mixed mode I/II) crack deformation. In this paper, a generalized maximum tangential stress criterion is employed for predicting the fracture initiation angle under mixed mode I/II loading in some brittle ceramics including alumina, zirconia, soda lime glass and three silicon based ceramics. The experimental results reported for the fracture angles in these ceramics have been obtained from fracture tests on the centrally cracked circular disc (often called the Brazilian disc). Very good agreement is shown to exist between the experimental results and the theoretical predictions. According to the fracture model, the mixed mode fracture angle is strongly dependent on the elastic T-stress in the tested ceramics. The negative T-stress that exists in the Brazilian disc specimen can be the main influencing parameter for decreasing the fracture initiation angle in the investigated ceramics.  相似文献   

4.
For a crack subjected to combined mode I and III loading the influence of a T-stress is analyzed, with focus on crack growth. The solid is a ductile metal modelled as elastic–plastic, and the fracture process is represented in terms of a cohesive zone model. The analyzes are carried out for conditions of small scale yielding, with the elastic solution applied as boundary conditions on the outer edge of the region analyzed. For several combinations of the stress intensity factors KI and KIII and the T-stress crack growth resistance curves are calculated numerically in order to determine the fracture toughness. In all situations it is found that a negative T-stress adds to the fracture toughness, whereas a positive T-stress has rather little effect. For given values of KI and T the minimum fracture toughness corresponds to KIII = 0.  相似文献   

5.
陶亮  矫桂琼  王波  张立同 《力学学报》2003,35(2):166-170
从界面断裂的角度出发,对三维编织CMC的断裂作了理论研究和数值分析,对于三点弯曲试件,通过数值拟合修正了能量释放率G的理论表达式中的自由常数A,同时也研究了材料的各个参变量对于断裂韧性的影响,由此得出了一个基本完善的三点弯曲试件断裂韧性G的理论公式,该能量释放率方法可以应用于单试件的试验计算,与断裂韧性的柔度标定方法相比,该方法一方面可以减少试验件数量;另一方面,试验结果显示出在试件切口尺雨处于0.4≤a/W≤0.5时,可以获得比较稳定的断裂韧性值。  相似文献   

6.
The influence of intrinsic stress gradient on the mode-I fracture of thin films with various thicknesses fabricated for Microelectromechanical Systems (MEMS) was investigated. The material system employed in this study was hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C). Uniform gauge microscale specimens with thicknesses 0.5, 1, 2.2, and 3 μm, containing mathematically sharp edge pre-cracks were tested under mode-I loading in fixed grip configuration. The effective opening mode fracture toughness, as calculated from boundary force measurements, was 4.25±0.7 MPa√m for 0.5-μm thick specimens, 4.4±0.4 MPa√m for 1-μm specimens, 3.74±0.3 MPa√m for 2.2-μm specimens, and 3.06±0.17 MPa√m for 3-μm specimens. Thus, the apparent fracture toughness decreased with increasing film thickness. Local elastic property measurements showed no substantial change as a function of film thickness, which provided evidence for the stability of the sp2/sp3 carbon binding stoichiometry in films of different thicknesses. Detailed experiments and finite element analysis pointed out that the dependence of the effective fracture toughness on specimen thickness was due to the intrinsic stress gradient developed during fabrication and post-process annealing. This stress gradient is usually unaccounted for in mode-I fracture experiments with thin films. Thicker films, fabricated from multiple thin layers, underwent annealing for extended times, which resulted in a stress gradient across their thickness. This stress gradient caused an out-of-plane curvature upon film release from its substrate and, thus, combined bending and tensile mode-I loading at the crack tip under in-plane forces. Since the bending component cannot be isolated from the applied boundary force measurements, its contribution, becoming important for thick films, remains unaccounted for in the calculation of the critical stress intensity factor, thus resulting in reduced apparent fracture toughness that varies with film thickness and curvature. It was concluded that in the presence of a stress gradient, accounting only for the average intrinsic stresses could lead in an overestimate of the fracture resistance of a brittle film. Under these considerations the material fracture toughness of ta-C, as determined from specimens with negligible curvature, is KIC=4.4±0.4 MPa√m.  相似文献   

7.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

8.
Abstract

This article is presenting the common experimental specimen for determining the fracture toughness of the first pure mode and second pure mode. The Notched beam is chosen from a presented common specimen in the form of three-point flexure beam and four-point flexure beam that were built in the concrete laboratory. For prevention of cracks growth, a critical load of first pure mode and the second pure mode of each specimen computed. Obtained results are used for computing the fracture toughness. For the purpose of investigating the effective fracture parameters in the suggested specimen, finite element analysis on the mentioned geometry is performed. Obtained results show that different parameters are effective on the fracture toughness including crack length, cement percentage, water and the thickness of biggest used aggregate in the sand. Also with changing each of these parameters, the fracture mechanic properties are changed. Each of these effects is examined separately in this article and the conclusions presented in tables and figures.

Communicated by Dumitru Caruntu.  相似文献   

9.
平面应变下紧凑拉伸试样的动态断裂韧性的实验研究   总被引:1,自引:0,他引:1  
材料的动态断裂韧性是衡量材料在动载荷作用下抵杭裂纹扩展能力的重要指标,以往的材料动态断裂韧性测试多采用三点弯曲试样,而针对紧凑拉伸试样的动态断裂韧性研究很少.本文将紧凑拉伸试样(即CT试样)简化成等效弹簧质量模型,得到了CT试样动态应力强度因子的近似表达式.对Hopkinson压杆装置进行了改进,利用改进后的实验装置进...  相似文献   

10.
Linear-elastic fracture mechanics and J-integral test methods were used to determine the static fracture behavior of a porous volcanic tuff. Notched and prefatigued specimens of two different sizes were tested in three-point bending. The fracture toughness (K Ic ) and theJ-resistance (J vs. crack growth) curve for each specimen was determined. The results indicate that there is good agreement between the fracture parameters determined by the two methods; however, there is some dependence of the results on specimen size. Possible reasons for this specimen-size dependence are discussed.  相似文献   

11.
In the present research, T-stress solutions are provided for a V-shaped notch in the case of surface defects in a pressurised pipeline. The V-shaped notch is analyzed with the use of the finite element method by the Castem2000 commercial software to determine the stress distribution ahead of the notch tip. The notch aspect ratio is varied. In contrast to a crack, it is found that the T-stress is not constant and depends on the distance from the notch tip. To estimate the T-stress in the case of a notch, a novel method is developed, inspired by the volumetric method approach proposed by Pluvinage. The method is based on averaging the T-stress over the effective distance ahead of the notch tip. The effective distance is determined by the point with the minimum stress gradient in the fracture process zone. This approach is successfully used to quantify the constraints of the notch-tip fields for various geometries and loading conditions. Moreover, the proposed T-stress estimation creates a basis for analyzing the crack path under mixed-mode loading from the viewpoint of the two-parameter fracture mechanics.  相似文献   

12.
Many approaches for estimating mode I fracture toughness (KIC) using circumferentially notched tensile (CNT) specimen have been demonstrated in the literature. In this paper, an effective approach for estimating fracture toughness from the numerical solution of critical crack tip opening displacement (CTOD) is proposed. An elasto-plastic finite element analysis is used to estimate critical CTOD values for CNT specimens. A number of materials are analysed, and the relationship between KIC and critical CTOD for CNT specimens is obtained. The proposed relationship is validated by comparing the fracture toughness values obtained from the relationship with those obtained experimentally using CNT specimens. The fracture toughness (KIC) calculated according to this relationship from numerically obtained critical CTOD is found to be in close agreement with the experimentally obtained fracture toughness for the respective materials.  相似文献   

13.
In this investigation the fracture behavior of functionally graded materials (FGMs) was studied by means of experiments carried out on model polymer-based FGMs. Model graded materials were manufactured by selective ultraviolet irradiation of ECO [poly(ethylene carbon monoxide)], a photo-sensitive ductile copolymer that becomes more brittle and stiffer under exposure to ultraviolet light. The mechanical response of the graded material was characterized using uniaxial tensile tests. Single edge notched tension graded ECO specimens possessing different spatial variations of Young’s modulus, failure stress and failure strain were tested under remote opening loading. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material. The measured displacement field was then used to extract fracture parameters such as stress intensity factor and T-stress, and thus construct resistance curves for crack growth in the FGMs. For this loading configuration it was found that the nonsingular T-stress term in the asymptotic expansion for stresses needs to be accounted for in order to accurately measure the fracture resistance in FGMs. In addition, the influence of local failure properties (i.e., failure stress and failure strain) on crack growth resistance was investigated in detail. It was found that depending on the combined effects of the spatial variation of these two failure parameters, regardless of the spatial variation of the Young’s modulus, the FGM fracture resistance can either increase, decrease or remain constant with continued crack growth.  相似文献   

14.
0Introduction Thefracturepropertiesofconcreteandrockmaterials,suchasfracturetoughnessKICand strengthfthavebeenofgreatinterestsformanyyearsbecauseoftheirimportantroleincontrolling thestructuralintegrityofvariousengineeringstructures[1-27].Varioustestingtec…  相似文献   

15.
The effect of constraint on brittle fracture of solids under predominantly elastic deformation and mode I loading conditions is studied. Using different cracked specimen geometry, the variation of constraint is achieved in this work. Fracture tests of polymethyl methacrylate were performed using single edge notch, compact tension and double cantilever beam specimens to cover a bread range of constraint. The test data demonstrate that the apparent fracture toughness of the material varies with the specimen geometry or the constraint level. Theory is developed using the critical stress (strain) as the fracture criterion to show that this variation can be interpreted using the critical stress intensity factorK Cand a second parameterT orA 3,whereT andA 3are the amplitudes of the second and the third term in the Williams series solution, respectively. The implication of this constraint effect to the ASTM fracture toughness value, crack tip opening displacement fracture criterion and energy release rateG Cis discussed. Using the same critical stress (strain) as the fracture criterion, the theory further predicts crack curving or instability under mode I loading conditions. Experimental data are presented and compared with the theory.  相似文献   

16.
This work presents a solution for the elastic T-stress at the tip of a slightly curved or kinked crack based on a perturbation approach. Compared to other exact or numerical solutions the present solution is accurate for considerable deviations from straightness. The T-stress variation as crack extends along a curved trajectory is subsequently examined. It is predicted that T-stress always keeps negative during crack extension when the crack has an initial negative T-stress. In the case of a positive T-stress and non-zero first and second stress intensity factors initially accompanying the crack, the T-stress is not positive with increasing the extension length until a threshold is exceeded. Based on directional stability criterion with respect to the sign of the T-stress, this result implies that for a straight crack with a positive T-stress, the crack extension path will not turn immediately and instead keep a stable growth until a critical length is reached. This prediction is consistent with experimental observations.  相似文献   

17.
佟钰  朱长军  田鑫  牛晚扬  王晴  曾尤 《实验力学》2016,31(2):269-276
断裂能是定量表征混凝土断裂韧性的重要指标,但其实验结果显著依赖于混凝土试件断面面积评价方法的有效性和准确性。因测定困难,通常情况下只能由截面面积代替,造成断裂能计算结果存在较大误差。本文以碳纤维混凝土为研究对象,采用数字处理技术对混凝土断面形貌进行量化分析、重构,结合分形计算方法得到混凝土的真实断面面积,并将其用于碳纤维混凝土的断裂能计算,分析讨论了纤维掺量和长度对混凝土断裂能的影响规律。实验结果表明:碳纤维的引入显著提高了混凝土断面的粗糙度,表现为断裂面分形维度的明显提高,实际断面面积随之增大,以此为依据计算出的混凝土断裂能及其增益比随碳纤维掺量和长度的变化规律与韧度系数测试数据(按ASTM C1018)的一致性良好。  相似文献   

18.
19.
Transferability of fracture toughness data obtained on small scale specimens to a full-scale cracked structure is one of the key issues in integrity assessment of engineering structures. In order to transfer fracture toughness under different constraints, both in-plane and out-of-plane constraint effect should be considered for the specimens and structures. In this paper both in-plane and out-of-plane constraint effects of a crack in a reference reactor pressure vessel (RPV) subjected to pressurized thermal shocks (PTSs) are analyzed by two-parameter and three-parameter methods. The comparison between elastic and elastic–plastic analysis shows that the constraint effect varies with the material property. T11 (the second term of William’s extension acting parallel to the crack plane) generally displays a reversed relation to the stress intensity factor (SIF) with the transient time, which indicates that the loading (SIF) plays an important role on the in-plane constraint effect. The thickness at the crack tip contributes more than the loading to the out-of-plane constraint, such that T33 (the second term of William’s extension acting along the thickness) displays a similar relation to ε33 (strain along the thickness direction) and a different relation to T11 during the transient. The results demonstrate that both in-plane and out-of-plane constraint effect should be analyzed separately in order to describe precisely the stress distribution ahead of the crack tip.  相似文献   

20.
The safety of many civil and mining concrete and rock structures including pre-existing crack networks is fundamentally affected by the mechanical behaviour of the material under static and cyclic loading. In cyclic loading case, cracks can grow at a lower load level compared to the monotonic case. This phenomenon is called fatigue due to subcritical crack propagation and depends on the behaviour of the fracture process zone (FPZ). This study presents the results of laboratory diametrical compression tests performed on Brisbane tuff disc specimens to investigate their mode-I (tensile) fracture toughness response to static and cyclic loading and relevant FPZ. The FPZ and fracture toughness response to cyclic loading was found to be different from that under static loading in terms of the ultimate load and the damage mechanisms in front of the chevron crack. A maximum reduction of the static fracture toughness (K IC ) of 42 % was obtained for the highest amplitude increasing cyclic loading test. Detailed scanning electron microscope (SEM) examinations were performed on the surfaces of the tips of the chevron notch cracks, revealing that both loading methods cause FPZ development in the CCNBD specimens. When compared with monotonic FPZ development, the main difference with the cyclically loaded specimens was that intergranular cracks were formed due to particle breakage under cyclic loading, while smooth and bright cracks along cleavage planes were formed under static loading. Further, the SEM images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both intergranular and transgranular subcritical fracturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号