首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe-doped titania films were deposited by RF sputtering onto different substrates (glass and ITO/glass) in the same deposition run. The rutile nanocrystalline structure of Fe-doped thin films deposited on glass substrates and anatase nanocrystalline structure of Fe-doped thin films deposited on ITO/glass substrates were evidenced by XRD. SEM investigations showed a smooth surface with a dense nanostructure. XPS study evidenced an almost stoichiometric composition with different iron contents. EPR and XPS studies evidenced that iron entered into TiO2 lattice by substitution, as isolated and dimer species. In Fe-doped thin films deposited on ITO/glass substrates the iron content is ten times higher than in Fe-doped thin films deposited on glass substrates and that a part of them entered as Fe2+.  相似文献   

2.
The results obtained by investigating the surface morphology and optical properties of thin CdS films formed on transparent glass and glass/indium-tin oxide (ITO) substrates via the chemical and electro-chemical methods are presented. Thin cadmium sulfide films are employed as optical windows in thin-film polycrystalline solar cells. Closely packed cadmium sulfide nanoparticles are observed on the conducting oxide (ITO) surface by means of atomic-force microscopy. Large particles (150–300 nm) comprise smaller particles with sizes of 20–30 nm. Thin CdS layers are characterized by a relatively high level of transmission (~60%) in the long-wavelength spectral region (520–600 nm).  相似文献   

3.
Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) films have been deposited on glass by rf-sputtering from an ITO target, using Ar plasma and N2 plasma, respectively, and different rf-power. Optical emission spectroscopy (OES) was employed to identify the species present in the plasma and to correlate them with the properties of the ITO and ITON thin films. Emission lines of ionic In could only be detected in N2 plasma, whereas in the Ar plasma additional lines corresponding to atomic In and InO, were detected. The deposition rate of thin films was correlated with the In species, rather than the nitrogen species, emission intensity in the plasma. The higher resistivity and lower carrier concentration of the ITON films, as compared to the respective properties of the ITO films, were attributed to the incorporation of nitrogen, instead of oxygen, in the ITON structure.  相似文献   

4.
Thin films of lead zirconate titanate (PZT) were obtained by a modified sol–gel route on float glass and indium tin oxide (ITO)-covered float glass substrates. Different thermal treatments were performed on the deposited films in the temperature range 100–700°C. Spectroscopic ellipsometry was used to investigate the optical properties of the deposited films, and the changing optical absorption spectra were interpreted in terms of the growth of two different crystal phases, pyrochlore and ferroelectric perovskite, as a function of annealing temperature. Moreover, a specific resonance at 1.9 nm was detected when thin PZT films are deposited on ITO substrates and was attributed to a particular charge distribution at the interface. Finally, the performance in rectifying the electro-optical response of asymmetric nematic liquid crystal cells was tested for some of the films undergoing different thermal treatments.  相似文献   

5.
Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.  相似文献   

6.
Fatigue-free Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films were successfully prepared on indium tin oxide (ITO) coated glass substrates using the sol-gel method combined with a rapid thermal annealing process (RTA). The films post-annealed at a temperature of 700 °C for 2 min by RTA process formed (110)-oriented Pb(Zr0.52Ti0.48)O3 thin films with pure perovskite structure, and had a good morphology as well. The good ferroelectricity of the prepared PZT films was confirmed by P–E hysteresis loop measurements. Fatigue characteristics showed stable behavior. Degradation in polarization was not found while the repeating cycles were up to 1011, and a low leakage current density of 10−8 A/cm2 was also obtained from the highly fatigue-resisted PZT thin films on ITO/glass substrates. Received: 19 October 1998 / Accepted: 29 March 1999 / Published online: 26 May 1999  相似文献   

7.
《Current Applied Physics》2015,15(7):794-798
We have studied the electrical and optical properties of Si-doped indium tin oxides (ITSOs) as transparent electrodes and anti-reflection coatings for Si-based solar cells. The ITSO thin films were obtained by co-sputtering of ITO and SiO2 targets under target power control. The resistivity of the ITSO thin films deposited at 0.625 in terms of power ratio (ITO/SiO2) were 391 Ωcm. In this condition, the ITSO thin films showed very high resistivity compared to sputted pure ITO thin films (1.08 × 10−3 Ωcm). However, refractive index of ITSO thin films deposited at the same condition at 500 nm is somewhat lowered to 1.97 compared to ITO thin films (2.06). The fabricated graded refractive index AR coatings using ITO, ITSO, and SiO2 thin films kept over 80% of transmittance regardless of their thickness varing from 97 nm to 1196 nm because of their low extinction coefficient. As the AR coating with graded refractive indices using ITO, ITSO, and SiO2 layers was applied to general silicon-based solar cell, the current level increased nearly twice more than that of bare silicon solar cell without AR coating.  相似文献   

8.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

9.
《Solid State Ionics》2006,177(19-25):1875-1878
Zinc gallate (ZnGa2O4) thin film phosphors have been formed on ITO glass substrates by a chemical solution method with starting materials of zinc acetate dihydrate, gallium nitrate hydrate and 2-methoxiethanol as a solution. The thin films were firstly dried at 100 °C and fired at 500 °C for 30 min and then, annealed at 500 °C and 600 °C for 30 min under an annealing atmosphere of 3% H2/Ar. XRD patterns of the thin film phosphors showed (311) and (220) peak indicating ZnGa2O4 crystalline phase in which all the (311) peaks of the film phosphors synthesized on ITO glass and soda-lime glass revealed high intensity with increasing annealing temperature from 500 °C to 600 °C. The ZnGa2O4 thin film phosphors represented marked change in AFM surface morphologies according to an annealing temperature under an annealing atmosphere (3% H2/Ar). The film phosphor, annealed at 600 °C, showed the embossed pattern with relatively regular spacing in AFM surface morphology. The ZnGa2O4 thin film phosphors formed on ITO glass, which were annealed at different temperatures and showed distinctive spectra with peak wavelengths of 434 nm and 436 nm in the blue emission region.  相似文献   

10.
In this work, a study of synthesis of thin films of Zn(O;OH)S and In(O;OH)S deposited by chemical bath deposition (CBD) is presented. The thin films of Zn(O;OH)S and In(O;OH)S were deposited from different chemical bath systems on absorber layers of CuInS2 (CIS), indium tin oxide substrates (ITO) and soda lime glass substrates (SL). The differences on the growth rate, optical, morphological and structural properties of the thin films Zn(O;OH)S and In(O;OH)S are studied. The Growth studies showed that thin films of Zn(O;OH)S and In(O;OH)S grown faster on CIS than on SL and ITO substrates. The optical and morphological studies showed that both thin films present high transmittance in visible electromagnetic spectrum and covered uniformly the surface of the substrate, furthermore it was observed that thin films of Zn(O;OH)S and In(O;OH)S were polycrystalline. Finally, the results suggest that thin films of Zn(O;OH)S and In(O;OH)S obtained in this work could be used as buffer layer to replace the thin films of CdS, which are conventionally used as buffer layer in chalcopyrite based solar cells.  相似文献   

11.
Float glass substrates covered by high quality ITO thin films (Balzers) were subjected for an hour to single thermal treatments at different temperature between 100 °C and 600 °C. In order to study the electric and optical properties of both annealed and not annealed ITO-covered float glasses, ellipsometry, spectrophotometry, impedance analysis, and X-ray measurements were performed. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. ITO film is modeled as a dense lower layer and a surface roughness layer. The estimated optical density for ITO and the optical density of the surface roughness ITO layer increases with the annealing temperature. In the near-IR range, the extinction coefficient decreases while the maximum of the absorption in the near UV range shift towards low photon energy as the annealing temperature increases. Spectrophotometry was used to estimate the optical band-gap energy of the samples. The thermal annealing changes strongly the structural and optical properties of ITO thin films, because during the thermal processes, the ITO thin film absorbs oxygen from air. This oxygen absorption decreases the oxygen vacancies therefore the defect densities in the crystalline structure of the ITO thin films also decrease, as confirmed both by ellipsometry and X-ray measurements.  相似文献   

12.
Thin films of complex oxides have been obtained by pulsed-laser deposition (PLD) from glass targets belonging to the system Li2O-Al2O3-P2O5-(RE)2O3, with RE = Nd, Pr, Er. The films were deposited on quartz, silicon and ITO/glass substrates using a F2 laser (λ = 157 nm, ι ≈ 20 ns) for ablation in vacuum. The structural, morphological and optical properties of the oxide films were investigated through IR and UV-VIS spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Spectroscopic Ellipsometry. The laser wavelength was found to be the key parameter to obtain thin films with very smooth surface. In this way new possibilities are opened to grow multilayer structures for photonic applications.  相似文献   

13.
ZnO thin films were deposited on glass, ITO (In2O3; Sn) and on ZnO:Al coated glass by spray pyrolysis. The substrates were heated at 350 °C. Structural characterization by X-ray diffraction (XRD) measurements shows that films crystallize in hexagonal structure with a preferential orientation along (0 0 2) direction. XRD peak-shift analysis revealed that films deposited on glass substrate (−0.173) were compressive, however, films deposited onto ITO (0.691) and on ZnO:Al (0.345) were tensile. Scanning electron microscopies (SEM) show that the morphologies of surface are porous in the form of nanopillars. The transmittance spectra indicated that the films of ZnO/ITO/glass and ZnO/ZnO:Al/glass exhibit a transmittance around 80% in the visible region. An empirical relationship modeled by theoretical numerical models has been presented for estimating refractive indices (n) relative to energy gap. All models indicate that the refractive index deceases with increasing energy band gap (Eg).  相似文献   

14.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   

15.
Thin films of pure and molybdenum (Mo)-doped tungsten trioxide (WO3) were deposited on indium tin oxide (ITO)-coated glass and Corning glass substrates by RF magnetron sputtering technique. The effect of Mo doping on the structural, morphological, optical and electrochromic properties of WO3 films was studied systematically. The energy dispersive X-ray analysis (EDAX) revealed that the films consist of molybdenum concentrations from 0 to 2 at.%. X-ray diffraction (XRD) studies indicated that with the increase of Mo concentration the structural phase transformation takes place from polycrystalline to amorphous phase. The crystallite size of the films decreased from 24 to 12 nm with increase of doping concentration of Mo in WO3. Scanning electron microscope (SEM) analysis revealed that Mo dopant led to significant changes in the surface morphology of the films. The electrochemical and electrochromic performance of the pure and Mo-doped WO3 were studied. The WO3 films formed with 1.3 at.% Mo dopant concentration exhibited high optical modulation of 44.3 % and coloration efficiency of 42.5 cm2/C.  相似文献   

16.
Although the fabrication of tin disulfide thin films by SILAR method is quiet common, there is, however, no report is available on the growth of SnS thin film using above technique. In the present work, SnS films of 0.20 μm thickness were grown on glass and ITO substrates by SILAR method using SnSO4 and Na2S solution. The as-grown films were smooth and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films. Scanning electron micrograph revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDAX showed that as-grown SnS films were slightly rich in tin component while UV-vis transmission spectra exhibited high absorption in the visible region. The intense and sharp emission peaks at 680 and 825 nm (near band edge emission) dominated the photoluminescence spectra.  相似文献   

17.
Undoped and Ni-doped thin films of cerium dioxide have been deposited by spray pyrolysis technique on the glass substrate at the optimized temperature (450 ± 5) °C. Thin films Ce1-xNixO2 doped by different concentrations of Ni was characterized by X-ray diffraction. Raman analysis showed a peak at 461 ± 1 cm−1 position for the undoped film, which corresponds to the active mode (F2g mode) of the cubic fluorite structure. SEM images showed that the particles have a uniform spherical shape. EDS data have confirmed all elements (Ce, Ni and O) existence. Optical properties of samples show a decrease in band gap energy with increasing the nickel rate. Cyclic voltammetry indicates that the storage capacity of samples increases as the Ni rate increases. The EIS of CeO2/ITO electrodes displays a small semicircular at high frequency. The theoretical results obtained using WIEN2k match well with the experimental ones.  相似文献   

18.
采用PECVD(等离子体增强化学气相沉积)工艺在普通玻璃和Si基上制备出了方块电阻低至89 Ω,可见光透过率高达79%,对基体附着力强的多晶态的AZO(ZnO:Al)薄膜.采用PECVD法制备AZO薄膜是一种有益的尝试,AZO透明导电薄膜不仅具有与ITO(透明导电薄膜,如In2O3:Sn)可比拟的光电特性,而且价格低廉、无毒,在氢等离子体环境中更稳定,所获结果对实际工艺条件的选择具有一定借鉴作用和参考价值. 关键词: AZO(ZnO:Al) 等离子体增强化学气相沉积 透明导电薄膜  相似文献   

19.
Thin layers of tungsten trioxide have been prepared from an aqueous solution of peroxotungstic acid (PTA) using the sol-gel method. Compositional, structural and optical characteristics of WO3 coated on indium tin oxide (ITO) conductive glass substrates were studied using X-ray diffractometery (XRD), cyclic voltammetery (CV), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Monoclinic and triclinic crystalline structures for thin film and powdered WO3 were confirmed by XRD analysis. SEM micrograph of annealed samples revealed micro cracks due to a decrease in density and a contraction of layers. EDX analysis showed that 1∶2 ratio of oxygen and tungsten atoms in the prepared films is obtained at heat treatment temperatures higher than 200 °C. Furthermore, the annealed samples showed very good electrochromic behavior in cyclic voltammetery studies. Refractive index “n” and extinction coefficient “k” values were found to be reduced by increasing the wavelength and decreasing the temperature.  相似文献   

20.
Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol–gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of ∼170–330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0–13.7 kΩ/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号