首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

2.
LiNi1 - y − zCoyMnzO2 (y = 0.25, 0.35, 0.5, 0.6; z = 0.1, 0.2), LiNi0.63Cu0.02Co0.25Mn0.1O2, LiNi0.65Co0.25Mn0.08Al0.02O2, LiNi0.65Co0.25Mn0.08Mg0.02O2 and LiNi0.65Co0.25Mn0.08Al0.01Mg0.01O2 cathode materials were synthesized by a soft chemistry EDTA-based method. Structural and transport properties of pristine and delithiated materials (LixNi0.65Co0.25Mn0.1O2, LixNi0.55Co0.35Mn0.1O2 and LiNi0.63Cu0.02Co0.25Mn0.1O2 oxides) are presented. In the considered group of oxides there is no correlation between electrical conductivity and the a parameter (M-M distance in the octahedra layers). The results of electrochemical performance of cathode materials are presented. The best stability during first 10 cycles was obtained for Li/LixNi0.63Cu0.02Co0.25Mn0.1O2 cell due to enhanced kinetics of intercalation process.  相似文献   

3.
Solid solution material Li1.2Ni0.16Co0.08Mn0.56O2 (0.5Li2MnO3?0.5LiNi0.4Co0.2Mn0.4O2) is obtained through rheological phase method and further treated in ammonium persulfate solution. The post-treatment significantly decreases the charging capacity above 4.5 V and enhances the columbic efficiency in the initial cycle. Along with the higher efficiency, the cycling stability and the rate capability both get improved. The improvement mechanism is investigated in terms of XRD, XPS, Raman spectrometry, and ICP-AES. The results confirm that (NH4)2S2O8 treatment leads to Li+ removal from Li2MnO3 component while the layered structure of the solid solution phase is well maintained. After being treated in 30% (NH4)2S2O8 solution, 95% columbic efficiency is observed on Li1.2Ni0.16Co0.08Mn0.56O2 in the first cycle and it also shows a near 200 mAh g?1 capacity at 4C current rate.  相似文献   

4.
The precursor of (Ni0.15Co0.15Mn0.7)CO3 has been synthesized by a carbonate precipitation method, which was used to prepare high-capacity cathode material Li1.2Ni0.12Co0.12Mn0.56O2 for lithium-ion batteries. Carbonate precipitation was conducted using NH4HCO3 solution as the precipitation reagent. Two different feeding ways were adopted during the precipitation process. The physical properties of the precursor and the resulting Li1.2Ni0.12Co0.12Mn0.56O2 were characterized in detail, and the electrochemical properties of the prepared Li1.2Ni0.12Co0.12Mn0.56O2 powers were evaluated. It was found that the structural and morphological properties of the precursor and the final material were effectively improved by the ordered addition method. Electrochemical studies confirmed that the Li1.2Ni0.12Co0.12Mn0.56O2 synthesized by ordered addition method exhibited a higher capacity of 287.3 mAh g?1, and the capacity retention after 30 cycles was 90.5 %.  相似文献   

5.
Uniform and single-crystalline Mn3O4 nano-spheres were synthesized by cathodic electrodeposition at high temperature (80 °C) and low current density (0.25 mA cm−1) on steel electrode. Further the annealed samples were characterized for their structural and morphological properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) studies. TEM and SEM images showed that particles have spherical shapes and the average diameter size was about 50 nm. Formation of Mn3O4 compound was confirmed from FTIR studies. The XRD pattern showed that the Mn3O4 exhibit tetragonal hausmannite structure. The results of N2 adsorption-desorption analysis indicated that Mn3O4 nano-sphere has BET surface area of about 177.6 m2 g−1 and average pore diameters of 3 and 4 nm. The possible formation mechanism of Mn3O4 nanostructures has been discussed. The supercapacitive properties of Mn3O4 sample in 0.5 M Na2SO4 electrolyte showed maximum supercapacitance of 235.4 Fg−1 at scan rate 10 mV s−1. Coulumbic efficiency could be kept about 90% during 1000 cycles at 10 mV s−1.  相似文献   

6.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

7.
Spherical LiNi1/3Co1/3Mn1/3O2 was successfully prepared by controlled crystallization. The preparation started with the spherical coprecipitate of Ni1/3Co1/3Mn1/3CO3 from NiSO4, CoSO4, MnSO4, NH4HCO3, and NH3·H2O, followed by pyrolysis of Ni1/3Co1/3Mn1/3CO3 at 600°C for 3 h. The X-ray diffraction analysis showed that the homogeneous cubic (Ni1/3Co1/3Mn1/3)3O4 was obtained after the pyrolysis. Spherical LiNi1/3Co1/3Mn1/3O2 was obtained by sintering of the mixture of as-obtained (Ni1/3Co1/3Mn1/3)3O4 and LiOH·H2O at 900°C for 6 h in air. As-prepared spherical LiNi1/3Co1/3Mn1/3O2 presented initial discharge capacity of 162.9 mA h g−1 and capacity retention of 98% at 50th cycle.  相似文献   

8.
Jidi Liu  Xue Yu  Jie Li 《Journal of luminescence》2010,130(11):2171-2174
A series of green phosphors Zn1.92−2xYxLixSiO4:0.08Mn2+ (0≤x≤0.03) were prepared by solid-state synthesis method. Phase and lattice parameters of the synthesized phosphors were characterized by powder X-ray diffractometer (XRD) and the co-doped effects of Y3+/Li+ upon emission intensity and decay time were investigated under 147 nm excitation. The results indicate that the co-doping of Y3+/Li+ has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, and the optimal photoluminescence intensity of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 103% of that of commercial phosphor when the doping concentration of Y3+/Li+ is 0.01 mol. Additionally, the decay time of phosphor is much shortened and the decay time of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 3.39 ms, shorter by 1.83 ms than that of commercial product after Y3+/Li+ co-doping.  相似文献   

9.
Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (X=0.17, 0.25, 0.33, 0.5) compounds are prepared by a simple combustion method. The Rietvelt analysis shows that these compounds could be classified as having the α-NaFeO2 structure. The initial charge-discharge and irreversible capacity increases with the decrease of x in Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. Indeed, Li[Ni0.50Mn0.50]O2 compound shows relatively low initial discharge capacity of 200 mAh/g and large capacity loss during cycling, with Li[Ni0.17Li0.22Mn0.61]O2 and Li[Ni0.25Li0.17Mn0.58]O2 compounds exhibit high initial discharge capacity over 245 mAh/g and stable cycle performance in the voltage range of 4.8 -2.0 V. On the other hand, XANES analysis shows that the oxidation state of Ni ion reversibly changes between Ni2+ and about Ni3+, while the oxidation state of Mn ion sustains Mn4+ during charge-discharge process. This result does not agree with the previously reported ‘electrochemistry model’ of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2, in which Ni ion changes between Ni2+ and NI4+. Based on these results, we modified oxidation-state change of Mn and Ni ion during charge-discharge process.  相似文献   

10.
Li1.2Ni0.13Co0.13Mn0.54O2 powders have been prepared through co-precipitation of metal oxalate precursor and subsequent solid state reaction with lithium carbonate. X-ray diffraction pattern shows that the massive rock-like structure has a good layered structure and solid solution characteristic. Scanning electron microscope and transition electron microscope images reveal that the Li1.2Ni0.13Co0.13Mn0.54O2 composed of nanoparticles have the size of 1–2 μm. As a lithium ion battery positive electrode, the Li1.2Ni0.13Co0.13Mn0.54O2 has an initial discharge capacity of 285.2 mAh g?1 at 0.1 C within 2.0–4.8 V. When the cutoff voltage is decreased to 4.6 V, the cycling stability of product can be greatly improved, and a discharge capacity of 178.5 mAh g?1 could be retained at 0.5 C after 100 cycles. At a high charge–discharge rate of 5 C (1,000 mAh g?1), a stable discharge capacity of 121.4 mAh g?1 also can be reached. As the experimental results, the Li1.2Ni0.13Co0.13Mn0.54O2 prepared from oxalate precursor route is suitable as lithium ion battery positive electrode.  相似文献   

11.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

12.
To further improve the electrochemical performance of LiFePO4/C, Nd doping has been adopted for cathode material of the lithium ion batteries. The Nd-doped LiFePO4/C cathode was synthesized by a novel solid-state reaction method at 750 °C without using inert gas. The Li0.99Nd0.01FePO4/C composite has been systematically characterized by X-ray diffraction, EDS, SEM, TEM, charge/discharge test, electrochemical impedance spectroscopy and cyclic stability. The results indicate that the prepared sample has olivine structure and the Nd3+ and carbon modification do not affect the structure of the sample but improve its kinetics in terms of discharge capacity and rate capability. The Li0.99Nd0.01FePO4/C powder exhibited a specific initial discharge capacity of about 161 mAh g− 1 at 0.1 C rate, as compared to 143 mAh g− 1 of LiFePO4/C. At a high rate of 2 C, the discharge capacity of Li0.99Nd0.01FePO4/C still attained to 115 mAh g− 1 at the end of 20 cycles. EIS results indicate that the charge transfer resistance of LiFePO4/C decreases greatly after Nd doping.  相似文献   

13.
Spinel LiMn2O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials were successfully synthesized by the citric-acid-assisted sol-gel method with ultrasonic irradiation stirring. The structure and electrochemical performance of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometer, cyclic voltamogram (CV) and the galvanostatic charge-discharge test in detail. XRD shows that all the samples have high phase purity, and the powders are well crystallized. SEM exhibits that LiMn1.4Cr0.2Ni0.4O4 has more uniform cubic-structure morphology than that of LiMn2O4. EDX reveals that a small amount of Mn3+ still exists in LiMn1.4Cr0.2Ni0.4O4. The galvanostatic charge-discharge test indicates that the initial discharge capacities for the LiMn1.4Cr0.2Ni0.4O4 and LiMn2O4 at 0.15 C discharge rates are 130.8 and 130.2 mAh g−1, respectively. After 50 cycles, their capacity are 94.1% and 85.1%, respectively. The CV curve implies that Ni and Cr dual substitutions are beneficial to the reversible intercalation and deintercalation of Li+, and suppress Mn3+ generation at high temperatures and provide improved structural stability.  相似文献   

14.
The layered Li1.2Mn0.54Ni0.13Co0.13O2 lithium-rich manganese-based solid solution cathode material has been synthesized by a simple solid-state method. The as-prepared material has a typical layered structure with R-3m and C2/m space group. The synthesized Li1.2Mn0.54Ni0.13Co0.13O2 has an irregular shape with the size range from 200 to 500 nm, and the primary particle of Li1.2Mn0.54Ni0.13Co0.13O2 has regular sphere morphology with a diameter of 320 nm. Electrochemical performances also have been investigated. The results show that the cathode material Li1.2Mn0.54Ni0.13Co0.13O2 prepared at 900 °C for 12 h has a good electrochemical performance, which can deliver a high initial discharge capacity of 233.5, 214.2, 199.3, and 168.1 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. After 50 cycles, the capacity retains 178.0, 166.3, 162.1, and 155.9 mAh g?1 at 0.1, 0.2, 0.5, and 1 C, respectively. The results indicate that the simple method has a great potential in synthesizing manganese-based cathode materials for Li-ion batteries.  相似文献   

15.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

16.
Mn3O4 thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), field emission scanning electron microscopy (FESEM), wettability test and optical absorption studies. The XRD pattern showed that the Mn3O4 films exhibit tetragonal hausmannite structure. Formation of manganese oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.30 eV. Mn3O4 film surface showed hydrophilic nature with water contact angle of 55°. The supercapacitive properties of Mn3O4 thin film investigated in 1 M Na2SO4 electrolyte showed maximum supercapacitance of 314 F g−1 at scan rate 5 mV s−1.  相似文献   

17.
To suppress the capacity fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 material as cathode materials for lithium-ion battery, we introduce a LiF coating layer on the surface to improve the cycling performance of Li1.2Ni0.13Co0.13Mn0.54O2 material. The modified sample shows a capacity of 163.2 mAh g?1 with a capacity retention of 95% after 100 cycles at a current density of 250 mA g?1, while the pristine sample only delivers a capacity of 129.9 mAh g?1 with a capacity retention of 82%. Compared with the pristine material, the LiF-modified sample exhibits an obvious enhancement in the electrochemical performance, which will be very beneficial for this material to be commercialized on the new energy vehicles and other related areas.  相似文献   

18.
Pure Li6CaB3O8.5 and Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) materials were prepared by a solution combustion synthesis method. The phase of synthesized materials was determined using the powder XRD and FTIR. The synthesized materials were investigated using spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 307 and 268 nm, respectively. The dependence of the emission intensity on the Pb2+ concentration for the Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) was studied and observed that the optimum concentration of Pb2+ in phosphor is 0.01 mol. The Stokes shift of the synthesized phosphor was calculated to be 4740 cm-1.  相似文献   

19.
Thin Li1+xMn2O4−δ films were deposited on several substrate materials (stainless steel, p-doped silicon and glassy carbon) by pulsed laser deposition. To obtain the correct thin film stoichiometries, targets with a different amount of excess lithium were required (Li1.03Mn2O4 + xLi2O; x = 2.5 and 7.5 mol%). The resulting polycrystalline thin films were characterized with respect to their morphology and electrochemical activity. It was found that only thin Li1+xMn2O4−δ films deposited on stainless steel and glassy carbon showed the typical insertion and deinsertion peaks of Li+ during cycling.  相似文献   

20.
We report results on the structural and magnetic properties of the CoxNi1−xTa2O6 series of compounds by X-ray powder diffraction, magnetic susceptibility and magnetization measurements. X-ray refinements carried out by the Rietveld method show that these compounds crystallize in a P42/mnm tetragonal structure. Magnetic susceptibility curves show a broadened maximum witnessing that these compounds exhibit two-dimensional antiferromagnetic behaviors. All the CoxNi1−xTa2O6 compounds order below 10 K and present a large ion anisotropy. The magnetic properties have been determined in both the paramagnetic and antiferromagnetic state. In the hypothesis of two dimensional AF ordering, the near neighbor exchange constants (J1) and the next near neighbor exchange constants for two different paths (J2 and J'2) were determined. The composition dependence of the magnetic properties including ordering temperature, exchange constants and anisotropy factors are discussed. The drastic reduction of the ordering temperature for x=0.20 for CoxNi1−xTa2O6, suggest the hypothesis of a peculiar magnetic behavior for this composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号