首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied luminescence properties and microstructure of 20 patterns Si/SiO2 multilayers. The photoluminescence spectra consist of two gaussian bands in the visible-infrared spectral region. It has been demonstrated that the strong PL band is caused by the radiative recombination in the Si/SiO2 interfaces states, whereas the weaker band originates from radiative recombination in the nanosized Si layers. The peak shift of this latter band shows a discontinuity that corresponds to a crystalline-to-amorphous phase change when the Si layers are thinner than 30 Å. The peak energy as a function of the layer thickness is interpreted using a quantum confinement model in the case of amorphous Si layers.  相似文献   

2.
Electrodeposition was used to deposit Cu2O thin films on ITO substrates. Photoresponse of the film clearly indicated n-type behavior of Cu2O in photoelectrochemical cells. The temperature dependence of photoluminescence (PL) revealed that the spectra consist of donor-acceptor pair emissions and the recombination between electrons bound to donors and free holes. We observed that the dominant intrinsic defect, oxygen vacancies, creates a donor energy level at 0.38 eV below the bottom of the conduction band. As a result, this donor level acts as a center for both PL emissions and to produce n-type conductivity in the electrodeposited Cu2O films. In addition, an acceptor energy level at 0.16 eV from the top of the valence band was observed.  相似文献   

3.
许佳雄  姚若河 《物理学报》2012,61(18):187304-187304
具有高光吸收系数的半导体Cu2ZnSnS4 (CZTS)薄膜是一种新型太阳能电池材料. 本文对n-ZnO:Al/i-ZnO/n-CdS/p-CZTS结构的CZTS薄膜太阳能电池进行分析, 讨论CZTS薄膜的掺杂浓度、厚度、缺陷态和CdS薄膜的掺杂浓度、 厚度对太阳能电池转换效率的影响以及太阳能电池的温度特性. 分析表明, CZTS薄膜作为太阳能电池的主要光吸收层, CZTS薄膜的掺杂浓度和厚度的取值对太阳能电池的转换效率有显著影响, CZTS薄膜结构缺陷态的存在会导致太阳能电池性能的下降. CdS缓冲层的掺杂浓度、厚度对太阳能电池光伏特性的影响较小. 经结构参数优化得到的n-ZnO:Al/i-ZnO/n-CdS/p-CZTS薄膜太阳能电池的最佳光 伏特性为开路电压1.127 V、短路电流密度27.39 mA/cm2、填充因子87.5%、 转换效率27.02%,转换效率温度系数为-0.14%/K.  相似文献   

4.
The lattice constants and elastic constants of the kesterite-type Cu2ZnSnS4 have been calculated using density-functional theory (DFT). The calculated lattice constants are in good agreement with the experimental data. The calculated elastic constants indicate that the bonding strength along the [1 0 0] and [0 1 0] directions is as strong as the one along the [0 0 1] direction. The high B/G ratio shows that the kesterite-type Cu2ZnSnS4 compound has ductile behavior. Finally, using the Debye model, the volume, bulk modulus and heat capacity as a function of temperature for the kesterite-type CZTS have been estimated at different pressures. The Debye temperature and Gruneisen parameter are 157 K and 2.28 at 300 K temperature, respectively. The present results can give some information for the design of the kesterite-type CZTS compounds, and these can also be used to stimulate future experimental and theoretical work.  相似文献   

5.
Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.  相似文献   

6.
Photoluminescence (PL) of Al2O3 films obtained by anodization of thermally evaporated and annealed thin Al films on p++Si in 0.3 M oxalic acid has been investigated. Thermal annealing at 200–950 °C under the dry nitrogen atmosphere was used for deactivation of luminescence centres. Luminescence from as grown films was broad and located at 425 nm. This luminescence reached to highest level after annealing at 600 °C. Maximum 10 min was required for full optical activation and prolonged annealing up to 4 h did not change the luminescence intensity. Because of deep levels, absorption band edge of as grown films was shifted to the lower energy which is 3.25 eV. Annealing above 800 °C reduced the PL intensity and this observation was correlated with the blue shift of band edge as the defects annealed out. Disappearing PL intensity and blue shift of band edge absorption after annealing at 950 °C was mainly attributed to the oxygen-related defects and partly to impurities that may be originated from oxalic acid. AFM results did not show any hexagonally ordered holes but uniformly distributed nanosized Al2O3 clusters that were clearly seen. XRD measurements on as grown Al2O3 showed only [1 1 0] direction of α phase. Debye–Scherer calculation for this line indicates that cluster size is 35.7 nm. XRD and AFM pictures suggest that nanocrystalline Al2O3 are embedded in amorphous Al2O3.  相似文献   

7.
Bi5GexSe95−x (30, 35, 40 and 45 at.%) thin films of thickness 200 nm were prepared on glass substrates by the thermal evaporation technique. The influence of composition and annealing temperature, on the structural and electrical properties of Bi5GexSe95−x films was investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). The XRD patterns showed that the as-prepared films were amorphous in nature with few tiny crystalline peaks of relatively low intensity for 30 and 45 at.% and the Bi5Ge40Se55 annealed film was polycrystalline. The chemical composition of the Bi5Ge30Se65 film has been checked using energy dispersive X-ray spectroscopy (EDX). The electrical conductivity was measured in the temperature range 300-430 K for the studied compositions. The effect of composition on the activation energy (ΔE) and the density of localized states at the Fermi level N(EF) were studied, moreover the electrical conductivity was found to increase with increasing the annealing temperature and the activation energy was found to decrease with increasing the annealing temperature. The results were discussed on the basis of amorphous-crystalline transformations.  相似文献   

8.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   

9.
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice.  相似文献   

10.
报道了调制掺杂的应变In0.60Ga0.40As/In0.52Al0.48As多量子阱中室温光致发光光谱.观察到n=1和2电子子带到n=1重空穴子带的强发光峰.在低温下可以观察到n=1电子子带到n=1轻空穴弱发光肩胛.通过对发光强度随激发功率及温度依赖关系以及理论模型的分析研究,认为该调制掺杂量子阱中辐射复合效率降低的主要机制是应变失配位错对载流子的陷阱作用.界面上的失配位错是陷阱的主要来源.并用静态的光致发光理论模型 关键词:  相似文献   

11.
Temperature- and excitation-intensity-dependent photoluminescence (PL) spectra of semimagnetic Pb1−xMnxSe nanocrystals embedded in glass matrix have been studied. Two types of dot families with different sizes and dispersions were identified by spectral deconvolution in Gaussian components with different full widths at half maxima values. Temperature induced carrier-transfer interdots are responsible for the sigmoidal temperature dependence of the higher PL peak energy and for anomalous enhanced photoluminescence emission efficiency, at low temperatures. The activation energy of nonradiative channel responsible for a strong thermal quenching, at T>80 K, is deduced from an Arrhenius plot of integrated PL intensity.  相似文献   

12.
Cu2ZnSnS4 (CZTS) has an optical band gap of 1.4–1.5 eV, which is similar to that of Cu(In,Ga)Se2 (CIGS), and a high absorption coefficient (>104 cm−1) in the visible light region. In previous reports, CIGS thin-film solar cells have been shown to improve the performance of the device since the secondary phase is removed by Potassium cyanide (KCN) etching treatment. Therefore, in this study we applied a KCN etching treatment on CZTS and measured the effects. We confirmed the removal of Cu2−xS via Kelvin probe force microscopy (KPFM) and Raman scattering spectroscopy. The effects of the experiment indicate that we can define with precision the location of the secondary phases, and therefore the control of the secondary phases will be easier and more efficient. Such capabilities could improve the solar cell performance of CZTS thin-films.  相似文献   

13.
We find that PL intensity I(t) of SrTiO3 thin film measured under UHV condition increases with UV-laser illumination over long time scale of ∼ 2 h. The intensity increase takes place at lower sample temperature as well, 200, 100 K, and 20 K. When O2 and N2 gas are introduced into the sample chamber the PL intensity decreases with the UV-illumination time, opposite to the UHV-case. We consider a quantitative thermal energy flow model of the laser-power and heat absorption by the sample, but find that temperature change of the sample is not large enough to account for the time dependent I(t). We propose photo-catalysis effect on STO surface as possible scenario of the PL intensity change.  相似文献   

14.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite have been synthesized by solid-state reaction method to investigate their optical and electrical properties. The properties of electrical resistivity and Seebeck coefficient were measured in the high temperature ranging from 300 to 960 K, and the Hall effect and the optical properties were measured at room temperature. The obtained results of Seebeck showed the samples are p-type conductor. The optical properties at room temperature exhibited the samples are transparent visible light material with optical direct gap 3.45 eV. The low electrical resistivity, hole mobility and carrier density at room temperature displayed value ranging from 0.29 to 0.08 Ω cm, 1.8 to 8.6 cm2/V s and 1.56 × 1018 to 4.04 × 1019 cm−3, respectively. The temperature range for transparent visible light is below 820 K because the direct energy gap contains value above 3.1 eV. Consequently, the Cu1−xPtxFeO2 delafossite enhance performance for materials of p-type transparent conducting oxide (TCO) with low electrical resistivity.  相似文献   

15.
Luminescent nanocrystalline Si dots were fabricated directly on thermally grown SiO2 at 120°C by conventional RF plasma-enhanced chemical vapor deposition using tetrachlorosilane, SiCl4 and H2. As-deposited Si dot exhibits photoluminescence (PL) in the visible region, consisting of two broad bands corresponding to photon energies of 1.38 and 1.48 eV. Storage in air enhances PL and shifts the PL peak energy to higher wavelengths for dots of diameter less than 10 nm. Fourier transform attenuated total reflection absorption spectroscopy (FTIR-ATR) study reveals that the spontaneous oxidation proceeds until saturation after 70 h at dot sizes of 3–5 nm. The relationship between PL intensity, blueshift of PL peak energy, and surface termination species during oxidation indicates that these changes are attributed to the increased density of radiative centers at the Si nanocrystal dot/SiO2 interface and enhancement of the quantum confinement effect.  相似文献   

16.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

17.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

18.
The crystalline Eu0.25Y1.75SiO5 (EYSO) fine powders were prepared using metallorganic decomposition process, in which the pure X1- and X2-Y2SiO5 phases were obtained by calcining at temperatures from 850°C to 1600°C. The influence of calcining temperature on photoluminescence (PL) and thermal quenching were systematically investigated from room temperature to 573 K for the first time. As a consequence, the X2-EYSO was higher in light emission intensities than the X1-EYSO, but the X1-EYSO possessed better temperature dependence of PL. The phase structure had a significant effect on the light emission intensity and energy as well as its temperature characteristics in the EYSO.  相似文献   

19.
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions.  相似文献   

20.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号