共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the influence of film thickness on the first-order martensite–austenite phase transformation of Ni–Mn–Sn ferromagnetic
shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni–Mn–Sn films (from ~100
to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 °C. X-ray analysis reveals that all the
films exhibit austenitic phase with the L21 cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film
thickness, but the films with thickness above ~1,400 nm show structural deterioration due to the formation of MnSn2 and Ni3Sn4 precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film–substrate
interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as
well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of ~120 nm.
For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better
hysteresis as film thickness is increased up to ~1,400 nm, after which degradation of phase transformation phenomenon is observed.
This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness ~1,400 nm
possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for
the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values
of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve
the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias
phenomenon is also found to be present in the films of thickness 1014, 1412, and 2022 nm exhibiting prominent martensitic
transformation. Film of thickness 2,022 nm exhibits maximum exchange bias of ~50 Oe and higher exchange bias blocking temperature
of 70 K as compared to other films. 相似文献
2.
R. Vishnoi R. Singhal K. Asokan D. Kanjilal D. Kaur 《Applied Physics A: Materials Science & Processing》2012,107(4):925-934
The effects of 200 MeV Au ions irradiation on the structural and magnetic properties of Ni–Mn–Sn ferromagnetic shape memory alloy (FSMA) thin films have been systematically investigated. In order to understand the role of initial microstructure and phase of the film with respect to high energy irradiation, the two types of Ni–Mn–Sn FSMA films having different phases at room temperature were irradiated, one in martensite phase (Ni58.9Mn28.0Sn13.1) and other in austenite phase (Ni50Mn35.6Sn14.4). Transmission electron microscope (TEM) and scanning electron microscope (SEM) images along with the diffraction patterns of X-rays and electrons confirm that martensite phase transforms to austenite phase at a fluence of 6×1012 ions/cm2 and a complete amorphization occurs at a fluence of 3×1013 ions/cm2, whereas ion irradiation has a minimal effect on the austenitic structure (Ni50Mn35.6Sn14.4). Thermo-magnetic measurements also support the above mentioned behaviour of Ni–Mn–Sn FSMA films with increasing fluence of 200 MeV Au ions. The results are explained on the basis of thermal spike model considering the core and halo regions of ion tracks in FSMA materials. 相似文献
3.
T. Büsgen J. Feydt R. Hassdorf S. Thienhaus A. Zayak P. Entel 《Phase Transitions》2013,86(1-3):267-276
Results of the first-principles calculations of the magnetic shape-memory alloy NiMnAl are presented. The properties of a series of alloys in the composition range Ni50Mn x Al50? x with 0 ≤ x ≤ 50 were deduced from the ab initio simulations. One essential result is that the alloy is ferromagnetic in the range from 14 to 31?at.% Mn. Furthermore, the martensitic phases 2?M, 10?M, and 14?M with long-periodic structure were calculated. They are metastable in the stoichiometric Ni2MnAl alloy due to additional bonding between specific atomic sites. Their properties are discussed in terms of the density of states and their charge distribution. 相似文献
4.
Evidence of relaxation has been observed in ferromagnetic Ni–Mn–Ga single crystals. The relaxation may be explained by a change in symmetry-conforming short-range ordering according to Ren and Otsuka in this off-stoichimetric ordered alloy. Martensite stabilization has also been found after martensite ageing. 相似文献
5.
Nanocrystalline thin films of Ni–Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120?keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni–Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni–Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni–Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9?×?1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni–Ti thin films. 相似文献
6.
Nano structured Ni52.6Mn23.7Ga24.3 alloy was prepared using the ball milling technique. High martensitic transition temperatures are observed in the range between 336 and 367 K. The X-ray diffraction profile revealed that annealed Ni–Mn–Ga powder at 1073 K displays mixture phases of austenite and martensite. Annealing at 1173 K induces phase transformation from mixture phase to Heusler L21 structure, which confirms the high-temperature shape memory effect. On the contrary, the milled sample shows no evidence of shape memory effect. Furthermore, annealing at higher temperature (1273 K) shows the accumulation of oxidation, which leads to the loss of shape memory effect. The grain size increases with increasing annealing temperature and causes deterioration in the soft magnetic properties. 相似文献
7.
8.
Kanji Shibagaki Kota Kawano Atsuto Mori 《Applied Physics A: Materials Science & Processing》2013,110(4):805-808
Shape-memory alloys are crucial in various industrial fields. However, a high-quality film synthesis method has not been established yet. Here we examine optimum conditions for synthesis of thin films by pulsed laser deposition of Ti–Ni alloy target in vacuum. We investigated surface morphologies and chemical compositions of the films which were obtained under various conditions. We found that the suitable Ti/Ni ratio was obtained by adjusting the distance between the target and the substrate in vacuum. In parallel, we analyzed plasma plume by optical emission spectroscopy and time-of-flight mass spectrometry. We discuss the basic behavior of ablated particles in vacuum. 相似文献
9.
We report on new aspects of martensite stabilization in high-temperature shape memory alloys. We show that, due to the difference in activation energies among various structural defects, an incomplete stabilization of martensite can be realized. In material aged at high temperatures, this gives rise to a variety of unusual features which are found to occur in the martensitic transformation. Specifically, it is shown that both forward and reverse martensitic transformations in a Ni–Mn–Ga high-temperature shape memory alloy can occur in two steps. The observed abnormal behaviour is evidence that, in certain circumstances, thermoelastic martensitic transformation can be induced by diffusion. 相似文献
10.
The ferromagnetic Heusler-type alloy Ni50Mn35Sb15 exhibits well defined shape memory behaviour. We have investigated the transport and magnetic properties of this alloy across the martensitic transformation. Pronounced thermo-magnetic irreversibility between zero-field-cooled and field-cooled susceptibility data was observed below the martensitic transition temperature. We observe significant magnetic after-effect in magnetisation in both austenite and martensitic phases. However, a clear change in the nature of relaxation is observed as the sample is cooled across the martensitic transition temperature. These observations can be explained on the basis of complex domain dynamics in presence of rich micro-structure formation in the martensite. 相似文献
11.
Effect of chemical ordering annealing on superelasticity of Ni–Mn–Ga–Fe ferromagnetic shape memory alloy microwires 下载免费PDF全文
《中国物理 B》2020,(5)
Ni_(50)Mn_(25)Ga_(20)Fe_5 ferromagnetic shape memory alloy microwires with diameters of ~ 30–50 μm and grain sizes of ~ 2–5 μm were prepared by melt-extraction technique. A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress, compositional inhomogeneity,and high-density defects in the as-extracted Ni_(50)Mn_(25)Ga_(20)Fe_5 microwires. The annealed microwires exhibited enhanced atomic ordering degree, narrow thermal hysteresis, and high saturation magnetization under a low magnetic field. As a result, the annealed microwire showed decreased superelastic critical stress, improved reversibility, and a high superelastic strain(1.9%) with a large recovery ratio(96%). This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices. 相似文献
12.
Micromechanism of the shape recovery process is optically observed in single crystals of the Cu–Al–Ni shape memory alloy. Formation of X and λ-interfaces (interfacial microstructures with two intersecting habit planes) is documented, both in a thermal gradient and during a homogeneous heating. The observed growth mechanisms (i.e. mechanisms of nucleation and growth of the twinned structures) are described and analysed. Weakly non-classical boundaries between austenite and two crossing twinning systems are also documented. 相似文献
13.
14.
Among the series of alloys derived from Ni50Mn29Ga21 on selective substitution of Co for Ni and Mn, two alloys Ni49.8Mn27.2Ga21.2Co1.8 and Ni46.9Mn28.8Ga21Co3.3 referred to as CoMn-1.8 and CoNi-3.3, respectively, are found to exhibit an additional first-order transformation below their martensitic transformation temperatures. Systematic studies on temperature and field dependence of magnetic properties of these alloys are carried out, through the transformations, to understand their origin. An examination of these results in conjunction with those from structural investigations reveals that the transformation in the CoMn-1.8 alloy is an intermartensitic transformation and has a structural origin, while that in the CoNi-3.3 alloy is not of the structural origin and is attributed to local spin inversion of Co moments, which is of the magnetic origin. 相似文献
15.
《中国物理 B》2015,(5)
A ferromagnetic shape memory composite of Ni–Mn–Ga and Fe–Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni–Mn–Ga alloy,the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe–Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. 相似文献
16.
Experimental evidence for Bose–Einstein condensation (BEC) of magnons at room temperature in a thin film of yttrium iron garnet (YIG) excited by parallel pumping is already available and different features of the experimental results have been explained qualitatively [Nature 443, 430 (2006)]. In the present work, we explain quantitatively different aspects of this experimental observation through spin wave treatment. In the case of parallel pumping field, we have developed a formula for the time required for the formation of magnon BEC in a thin film of ferromagnetic material. This relation is found to be in good agreement with known experimental results. In a similar treatment we predict the condition for the formation of BEC of magnons in the case of perpendicular pumping. 相似文献
17.
18.
Solid refrigeration technology based on the elastocaloric effect has a great potential alternative to the conventional vapor compression cooling. Here we report the large elastocaloric effect in Ti–Ni(50 at%) shape memory alloy below its austenite finish temperature A_f under different strain. Both Maxwell's and Clausius–Clapeyron equations are used to estimate the entropy change. The strain-induced entropy change increases with raising the strain and gets a maximum value at a few kelvins below A_f. The maximum entropy changes ?S_(max) are-20.44 and-53.70 J/kg·K, respectively for 1% and2% strain changes. Large entropy change may be obtained down to 20 K below A_f. The temperature of the maximum entropy change remains unchanged before the plastic deformation appears but moves towards low temperature when the plastic deformation happens. 相似文献
19.
AbstractTo obtain a direct non-magnetic analogy to Ni–Mn–Ga 10M martensite with highly mobile twin boundaries, we present the recalculation of twinning systems in Cu–Ni–Al martensite. In this approach, the twinning planes denoted as Type I, Type II and compound have similar orientations for both alloys (Ni–Mn–Ga and Cu–Ni–Al). In Cu–Ni–Al, compound twinning exhibits the twinning stress of 1 to 2 MPa comparable to twining stress of Ni–Mn–Ga. In contrast Type II twinning stress of Cu–Ni–Al is approximately 20 MPa, i.e. much higher than twinning stress for Type II in Ni–Mn–Ga (0.1 to 0.3 MPa). Similarly to Ni–Mn–Ga, the twinning stress of Type II in Cu–Ni–Al is temperature independent. Moreover, no temperature dependence was found also for compound twinning in Cu–Ni–Al. 相似文献
20.
C. Aksu Canbay Z. Karagoz Genc M. Sekerci 《Applied Physics A: Materials Science & Processing》2014,115(2):371-377
In this study, the Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys at the range of 10–12 at.% of aluminum and 4–5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu–Al–Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu–Al–Mn–Ni sample is martensite, and due to the low solubility of the Ti, the Cu–Al–Mn–Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu–Al–Mn, Cu–Al–Mn–Ni and Cu–Al–Mn–Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied. 相似文献