首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2015,15(11):1337-1341
The chemical states of ternary post-transition metal oxide thin films of InGaO, GaZnO and InZnO were investigated using X-ray photoelectron spectroscopy. Detailed binding energy (BE) analyses revealed certain evolution in chemistry in the ternary oxides compared to the reference binary oxides of In2O3, ZnO, or Ga2O3. In particular, O 1s BEs were changed with the compositions, which suggests that the charge transfer (CT) between In3+/Ga3+/Zn2+ and O2− ions is significant. Results of extended X-ray absorption fine structure analyses further showed that the first shell coordination (cation–O bond) is roughly maintained even though the ternary oxide films were structurally disordered. This implies that the CT process via O2− ions can influence the charge reconstructions in the ternary oxide systems.  相似文献   

2.
Amorphous thin films of InGaZnO4 (a-IGZO) doped with Cr have been fabricated by using pulsed-laser deposition (PLD). The electrical, optical and magnetic properties of Cr-doped a-IGZO films grown at 25 °C and 150 °C were investigated. The conductivity, optical transmission and band gap of films are remarkably enhanced by increasing the growth temperature. Conductivity, carrier concentration and mobility decrease with increasing the Cr content. However, the optical transmission and band gap are not significantly affected by Cr doping. Moreover, all Cr-doped films exhibit room-temperature ferromagnetism.  相似文献   

3.
《Current Applied Physics》2015,15(4):452-455
We report on the optimization of the optical and electrical properties of IGZO/Ag/IGZO multilayer films as a function of IGZO thickness. The transmission window slightly widened and shifted toward lower energies with increasing IGZO thickness. The IGZO(39 nm)/Ag(19 nm)/IGZO(39 nm) showed transmittance 88.7% at 520 nm. The optical transmittance spectra were examined by finite-difference time-domain (FDTD) simulations. The carrier concentration decreased from 1.73 × 1022 to 4.99 × 1021 cm−3 with increasing the IGZO thickness, while the charge mobility insignificantly changed from 19.07 to 19.62 cm2/V. The samples had sheet resistances of 4.17–4.39 Ω/sq with increasing IGZO thickness, while the resistivity increased from 1.89 × 10−5 to 6.43 × 10−5 Ω cm. The 39 nm-thick IGZO multilayer sample had a smooth surface with a root mean square roughness of 0.63 nm. The IGZO(39 nm)/Ag(19 nm)/IGZO(39 nm) multilayer showed a Haacke's FOM of 49.94 × 10−3 Ω−1.  相似文献   

4.
由于铟镓锌氧化物(IGZO) 薄膜具有高迁移率和高透过率的特点, 它作为有源层被广泛的应用于薄膜晶体管(TFT). 本文利用磁控溅射方法制备了TFT的有源层IGZO和源漏电极, 用简单低成本的掩膜法控制沟道的尺寸, 制备了具有高迁移率、底栅结构的n型非晶铟镓锌氧化物薄膜晶体管 (IGZO-TFT). 利用X 射线衍射仪(XRD) 和紫外可见光分光光度计分别测试了IGZO薄膜的衍射图谱和透过率图谱, 研究了IGZO薄膜的结构和光学特性. 通过测试IGZO-TFT的输出特性和转移特性曲线, 讨论了IGZO有源层厚度对IGZO-TFT特性的影响. 制备的IGZO-TFT器件的场效应迁移率高达15.6 cm2·V-1·s-1, 开关比高于107. 关键词: 非晶铟镓锌氧化物 薄膜晶体管 有源层  相似文献   

5.
One of promising approaches for further improving the sensitivity of microbolometer arrays with greatly-reduced pixel size is using the thermal-sensitive materials with higher performance. In this paper, Y-doped vanadium oxide (VOx) thin films prepared by a reactively sputtering process exhibit enhanced performance for the microbolometer application compared with frequently-applied VOx thin films. Both undoped and Y-doped VOx thin films are amorphous due to the relatively low deposition temperature. Y-doped VOx thin films exhibit smoother surface morphology than VOx due to the restrained expansion of particles during depositions. Y-doping increases the temperature coefficient of resistivity by over 20% for the doping level of 1.30 at%. The change rate of resistivity, after aging for 72 h, of thin films was reduced from about 15% for undoped VOx to 2% due to the introduction of Y. Moreover, Y-doped VOx thin films have a low 1/f noise level as VOx ones. Y-doping provides an attractive approach for preparing VOx thermal-sensitive materials with enhanced performance for microbolometers.  相似文献   

6.
《Current Applied Physics》2015,15(9):964-969
The effect of growth temperature on the phase evolution and morphology change of tin sulfide thin films by electron-beam evaporation was investigated. Orthorhombic tin monosulfide (SnS) was dominant at low growth temperature of 25 °C, whereas a sulfur-rich phase of Sn2S3 coalesced as the growth temperature increased over 200 °C. Thin film growth ceased at 280 °C due to re-evaporation of the tin sulfide. The dependence of growth temperature on the phase evolution of tin sulfide was confirmed by X-ray diffraction, scanning electron microscopy, and UV–Vis spectrophotometry. The lowest electrical resistivity of ∼51 Ω cm, with a majority hole concentration of ∼1017 cm3, was obtained for the film grown at 100 °C, and the resistivity drastically increased with increasing growth temperature. This behavior was correlated with the emergence of resistive sulfur-rich Sn2S3 phase at high temperatures.  相似文献   

7.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between 1014 and 3 × 1020 cm−3 by sputtering from single targets near room temperature was investigated as a function of power and process pressure. The resistivity of the films with In/Zn of ∼0.7 could be controlled between 5 × 10−3 and 104 Ω cm by varying the power during deposition. The corresponding electron mobilities were 4-18 cm2 V−1 s−1.The surface root-mean-square roughness was <1 nm under all conditions for film thicknesses of 200 nm. Thin film transistors with 1 μm gate length were fabricated on these IZO layers, showing enhancement mode operation with good pitch-off characteristics, threshold voltage 2.5 V and a maximum transconductance of 6 mS/mm. These films look promising for transparent thin film transistor applications.  相似文献   

8.
Aluminium-doped zinc oxide (ZnO:Al) films were prepared by magnetron sputtering at different radio-frequency powers (Prf) of 50, 100, 150 and 200 W. The properties of the films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman microscopy, and spectrophotometry with the emphasis on the evolution of compositional, surface-morphological, optical, electrical and microstructural properties. XPS spectra showed that within the detection limit the films are chemically identical to near-stoichiometric ZnO. AFM revealed that root-mean-square roughness of the films has almost linear increase with increasing Prf. Optical band gap Egopt of the films increases from 3.31 to 3.51 eV when Prf increases from 50 to 200 W. A widening Egopt of the ZnO:Al films compared to the band gap (∼3.29 eV) of undoped ZnO films is attributed to a net result of the competition between the Burstein-Moss effect and many-body effects. An electron concentration in the films was calculated in the range of 3.73 × 1019 to 2.12 × 1020 cm−3. Raman spectroscopy analysis indicated that well-identified peaks appear at around 439 cm−1 for all samples, corresponding to the band characteristics of the wurtzite phase. Raman peaks in the range 573-579 cm−1 are also observed, corresponding to the A1 (LO) mode of ZnO.  相似文献   

9.
We report on a comprehensive study of picosecond laser scribing of gallium doped zinc oxide (GZO) thin films deposited on glass substrates using 355 nm, 532 nm and 1064 nm radiation, respectively. In this study, we investigated the influence of front side and rear side irradiation and determined single pulse ablation thresholds for all three wavelengths. Good ablation quality with full electrical isolation, steep groove walls and a smooth groove bottom was achieved by 355 nm rear side processing with a scanning speed of 224 mm/s. Ridges at the groove rims were found to be between 15 nm and 45 nm high. At similar scanning speed, laser scribing using 532 nm and 1064 nm radiation resulted in a lower ablation quality due to a higher roughness of the groove bottoms or higher ridges at the groove rims.  相似文献   

10.
A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by electron beam in the above instrument. The I–V characteristic is found to be nonlinear before electron irradiation and linear after electron irradiation. The TEP measurement confirms the n-type nature of the material. The TEP and I–V measurements also confirm the modification of ITO/CdS interface with electron irradiation.   相似文献   

11.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

12.
Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (Ts) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at Ts ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface morphology studies of the films using AFM reveal the formation of nanostructured indium oxide thin films.  相似文献   

13.
Float glass substrates covered by high quality ITO thin films (Balzers) were subjected for an hour to single thermal treatments at different temperature between 100 °C and 600 °C. In order to study the electric and optical properties of both annealed and not annealed ITO-covered float glasses, ellipsometry, spectrophotometry, impedance analysis, and X-ray measurements were performed. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. ITO film is modeled as a dense lower layer and a surface roughness layer. The estimated optical density for ITO and the optical density of the surface roughness ITO layer increases with the annealing temperature. In the near-IR range, the extinction coefficient decreases while the maximum of the absorption in the near UV range shift towards low photon energy as the annealing temperature increases. Spectrophotometry was used to estimate the optical band-gap energy of the samples. The thermal annealing changes strongly the structural and optical properties of ITO thin films, because during the thermal processes, the ITO thin film absorbs oxygen from air. This oxygen absorption decreases the oxygen vacancies therefore the defect densities in the crystalline structure of the ITO thin films also decrease, as confirmed both by ellipsometry and X-ray measurements.  相似文献   

14.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

15.
《Current Applied Physics》2015,15(6):675-678
Penetration effects of various electrode materials, namely Al, Au, and Cu, on the physical and electrical characteristics of amorphous oxide semiconductor thin film transistors (TFTs) were investigated. Amorphous indium gallium zinc oxide (a-IGZO) TFTs were fabricated with conventional staggered bottom gate structures on a p-type Si substrate. X-ray photoemission spectroscopy (XPS) analysis under the electrode deposition area revealed variations in the oxygen bonding states and material compositions of the a-IGZO layer. Field-emission scanning electron microscopy (FE-SEM) with the line scan of energy dispersive spectroscopy (EDS) showed lateral penetration by the electrode metal. To compare the electrical characteristics of the tested TFTs, the initial current–voltage (I–V) transfer characteristics were examined. In addition, the tested TFTs fabricated using various electrode materials were tested under bias stress to verify the correlations between variations in TFT characteristics and both the metal work function and penetration-induced oxygen vacancies in the channel around the contact area.  相似文献   

16.
《Current Applied Physics》2018,18(9):1080-1086
In this study, we fabricated high-performance a-IGZO TFTs by forming Al2O3 and a-IGZO thin films for gate insulator and active channel layer, respectively, using a sol-gel process. MWI for low thermal budget process was used to condensate Al2O3 and a-IGZO films, which was compared with the CTA. It is found that the MWI is superior process to the conventional method in terms of precursor and solvent decomposition and has proven to be more effective for eliminating residual organic contaminants. In addition, the MWI-treated Al2O3 and IGZO films have smoother surfaces, higher visible light transmittance, lower carbon contamination and impurities than the CTA-treated films. We have demonstrated that a-IGZO TFTs with sol-gel solution-processed Al2O3 gate insulator and a-IGZO channel layer can achieve a field effect mobility of 69.2 cm2/V·s, a subthreshold swing of 86.2 mV/decade and a large on/off current ratio of 1.48 × 108, by the MWI process even at temperatures below 200 °C. In addition, the MWI-treated a-IGZO TFTs have excellent resistance to electron trapping and good stability to positive and negative gate-bias stress. Therefore, the sol-gel processed a-IGZO TFTs with Al2O3 gate oxide and the MWI treatment with a low thermal budget are promising for emerging transparent flat panel displays applications.  相似文献   

17.
《Current Applied Physics》2010,10(3):880-885
In the present work the influence of annealing temperature on the structural and optical properties of the In2O3 films deposited by electron beam evaporation technique in the presence of oxygen was studied. The deposited films were annealed from 350 to 550 °C in air. The chemical compositions of In2O3 films were carried out by X-ray photoelectron spectroscopy (XPS). The film structure and surface morphologies were investigated as a function of annealing temperature by X-ray diffraction (XRD) and atomic force microscopy (AFM). The structural studies by XRD reveal that films exhibit preferential orientation along (2 2 2) plane. The refractive index (n), packing density and porosity (%) of films were arrived from transmittance spectral data obtained in the range 250–1000 nm by UV–vis-spectrometer. The optical band gap of In2O3 film was observed and found to be varying from 3.67 to 3.85 eV with the annealing temperature.  相似文献   

18.
ZnSe thin films have been prepared by inert gas condensation method at different gas pressures. The influence of deposition pressure, on structural, optical and electrical properties of polycrystalline ZnSe films have been investigated using X-ray diffraction (XRD), optical transmission and conductivity measurements. The X-ray diffraction study reveals the sphalerite cubic structure of the ZnSe films oriented along the (1 1 1) direction. The structural parameters such as particle size [6.65-22.24 nm], strain [4.01-46.6×10−3 lin−2 m−4] and dislocation density [4.762-18.57×1015 lin m−2] have been evaluated. Optical transmittance measurements indicate the existence of direct allowed optical transition with a corresponding energy gap in the range 2.60-3.00 eV. The dark conductivity (σd) and photoconductivity (σph) measurements, in the temperature range 253-358 K, indicate that the conduction in these materials is through an activated process having two activation energies. σd and σph values decrease with the decrease in the crystallite size. The values of carrier life time have been calculated and are found to decrease with the reduction in the particle size. The conduction mechanism in present samples has been explained, and the density of surface states [9.84-21.4×1013 cm−2] and impurity concentration [4.66-31.80×1019 cm−3] have also been calculated.  相似文献   

19.
Laser scribing process of in-house textured gallium-doped zinc oxide (GZO) is optimized, aiming to improve the performance of amorphous silicon (a-Si:H) photovoltaic (PV) modules. The reasons for different scribing quality of textured GZO and SnO2:F scribed at 1064 nm with pulse duration of 40 ns were analyzed. Apart from separation resistance, quality of the scribed lines was evaluated by laser scan microscopy from three-dimensional images. Other types of lasers, such as laser with shorter pulse duration, laser at 355 nm and laser with Gaussian-to-tophat converter, were used to smooth the edges and flatten the bottoms of the scribed lines. The proper laser scribing realizes the advantages of textured GZO films used as front contacts in PV modules. A short-circuit current density of 14.3 mA/cm2 and an initial aperture area efficiency of 8.8% were obtained on 16 cm × 16 cm textured GZO coated glass scribed at 355 nm with pulse duration of 40 ns.  相似文献   

20.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号