首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2014,14(9):1228-1233
ZnO thin films and nanowires (NWs) were precisely treated by focused electron-beam (E-beam) irradiation with a line width between 200 nm and 3 μm. For both ZnO films and NWs, an increased green emission was clearly observed for the E-beam-treated parts. Using a high-resolution laser confocal microscope, the photoluminescence intensities for E-beam-treated ZnO structures increased with increasing dose 1.0 × 1017–1.0 × 1018 electrons/cm2. The resistivity of a single ZnO NW increased from 56 to 1800 Ω cm after the E-beam treatment. From the results for the annealed ZnO thin films, we analyzed that the variations in PL and resistivity were due to the formation of vacancies upon focused E-beam irradiation.  相似文献   

2.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

3.
Electron beam induced effects on Fluorine doped ZnO thin films (FZO) grown by chemical spray pyrolysis deposition technique were studied. The samples were exposed to 8 MeV electron beam at different dose rate ranging from 1 kGy to 4 kGy. All films exhibit a polycrystalline nature which shows an increase in crystallanity with irradiation dosages. The electron beam irradiation effectively controls the films surface morphology and its linear optical characteristics. Z-Scan technique was employed to evaluate the sign and magnitude of nonlinear refractive index and nonlinear absorption coefficient using a continuous wave laser at 632.8 nm as light source. Enhancement in the third order nonlinear optical properties was were noted due to electron beam irradiation. Tailoring the physical and NLO properties by electron beam, the FZO thin films becomes a promising candidate for various optoelectronic applications such as phase change memory devices, optical pulse compression, optical switching and laser pulse narrowing.  相似文献   

4.
Thin film beam splitters with high reflectivity at 532 nm and high transmittance at 1064 nm were deposited via reactive electron-beam evaporation with optimized parameters. The damage performance of the samples was investigated under irradiations of 532 nm laser only, 1064 nm laser only, and various combined laser fluences. The damages induced by the 1064 nm laser were primarily attributed to the initiators at the interface between the coatings and substrate. Under 532 nm laser irradiation only, two distinctive damage pits initiated by the submicron absorptive defects located at different coating depths and correlated to interfaces were observed. The damage effect under simultaneous irradiation in multilayer films was also investigated. The respective sensitive defects of the two lasers remained the precursors for causing damage. However, the dominant damage factors in simultaneous irradiation changed with the 1064 nm laser fluence, which also determined the coupling effect between the two lasers in terms of causing damage. Finally, correlative analysis methods were used to discuss the different coupling effects.  相似文献   

5.
Modified chemical bath deposited (MCBD) bismuth sulphide (Bi2S3) thin films’ structural, optical and electrical properties are engineered separately by annealing in air for 1 h at 300 °C and irradiating with 100 MeV Au swift heavy ions (SHI) at 5 × 1012 ions/cm2 fluence. It is observed that the band gap of the films gets red shifted after annealing and irradiation from pristine (as deposited) films. In addition, there is an increase in the grain size of the films due to both annealing and irradiation, leading to the decrease in resistivity and increase in thermoemf of the films. These results were explained in the light of thermal spike model.  相似文献   

6.
The effect of an 8 MeV electron-beam on the structural, optical and dielectric properties of polystyrene films has been investigated respectively by means of Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–VIS) spectroscopy and electrical impedance (LCR) analysis over a radiation dose in the range of 50–250 kGy using a Microtron accelerator. The FTIR spectral analysis shows no change in the overall structure of the irradiated polystyrene films, except a minor change in the intensity of a few peaks in the FTIR spectrum, indicating that polystyrene is resistant to electron-beam irradiation over the range of radiation doses investigated. The optical band gap analysis using the UV–VIS absorption spectra of the polystyrene shows a small decrease in the optical band gap (E g) and the activation energy with an increase in electron doses. Further, the dielectric measurements over a frequency range of 100 Hz to 1 MHz for the electron-beam-irradiated polystyrene films show that both the dielectric constant and the dielectric loss increase with an increase in electron radiation dose, which may be ascribed to the formation of defect sites in the band gap of polystyrene as a consequence of molecular chain scission in the polymer films upon irradiation.  相似文献   

7.
Phosphorus irradiation at a low energy (50 keV) and at a dosage of 8×1014 ions/cm2 was carried out on 〈002〉 ZnO films grown by using a pulsed laser deposition technique (Sample A). Subsequent rapid thermal annealing at 650 °C and 750 °C was performed to remove defects resulting from the irradiation (samples B and C, respectively). Atomic force microscopy was used to determine the root mean square roughness, which was 10.07, 8.66, and 9.31 nm for samples A, B, and C, respectively. Low-temperature photoluminescence measurements revealed increased deep-level defect peaks following irradiation; however, the subsequent annealing minimized the defects. Although the dominant donor-bound exciton peak verifies the n-type conductivity of the films, the free–electron–to–acceptor and donor-to-acceptor pair peaks in the irradiated samples confirm an increase in acceptor concentration.  相似文献   

8.
Transparent conductive ZnO:Al–Sc (1:0.5, 1:1, 1:1.5 at.% Al–Sc) thin films were prepared on glass substrates by sol–gel method. The microstructure, optical, and electrical properties of ZnO:Sc and ZnO:Al–Sc films were investigated. Results show that Sc-doping alone obviously decreases grain size and degrades the crystallinity; there is an amorphous phase on the surface of ZnO grains; the transmittance spectra fluctuate dramatically with a large absorption valley at about 430–600 nm. However, Al–Sc co-doping can stabilize grain size and improve the microstructure; an average visible transmittance of above 73% is obtained with no large absorption valley; the amorphous phase does not appear. The optical band gaps of ZnO:Sc and ZnO:Al–Sc films (3.30–3.32 eV) are blue-shifted relative to pure ZnO film (3.30 eV). Hall effects show that the lowest resistivity of 2.941 × 10−2 Ω cm and the maximum Hall mobility of 24.04 cm2/V s are obtained for ZnO:Al–Sc films while ZnO:Sc films do not exhibit any electrical conductivity. Moreover, there is an optimum atomic ratio with Al to Sc of 1:0.5–1 at.%. Although the resistivities are increased compared with that of ZnO:Al film, the Hall mobilities are raised by one order of magnitude.  相似文献   

9.
The electrical activities of stacking faults (SFs) and partial dislocations in 4H-SiC homoepitaxial films were investigated by using the electron-beam-induced current (EBIC) technique. The basal plane dislocation was dissociated into Si(g) 30° and C(g) 30° partials under electron-beam irradiation, with a SF formed in between. The SF shows bright contrast at RT and dark contrast at 50 K in EBIC images. The reasons were discussed according to the quantum-well state of SF. C(g) 30° partial is always more electrically active than Si(g) 30° partial at each specific accelerating voltage. The EBIC contrasts of those two partials were discussed with the number of recombination centers.  相似文献   

10.
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.  相似文献   

11.
《Current Applied Physics》2014,14(6):850-855
Transparent and conductive thin films of fluorine doped zinc tin oxide (FZTO) were deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. The effect of annealing temperature on the structural, electrical and optical performances of FZTO thin films has been studied. FZTO thin film annealed at 600 °C shows the decrease in resistivity 5.47 × 10−3 Ω cm, carrier concentration ∼1019 cm−3, mobility ∼20 cm2 V−1 s−1 and an increase in optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures which is well explained by Burstein–Moss effect. The optical transmittance of FZTO films was higher than 80% in all specimens. Work function (ϕ) of the FZTO films increase from 3.80 eV to 4.10 eV through annealing and are largely dependent on the amounts of incorporated F. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.  相似文献   

12.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

13.
Low-temperature scanning electron microscopy (LTSEM) is a promising measuring technique for probing the spatial distribution of the superconducting properties of the high-temperature superconducting (HTS) thin films. A theoretical analysis of the electron-beam irradiation on the HTS thin films in the LTSEM has been carried out. An inhomogeneously distributed grain array model has been applied in the analysis, and some numerical sim-ulations have been carried out on the electron-beam induced voltage (EIV) signals in the LTSEM experiments. The comparisons of our numerical results with the LTSEM experi-mental data indicate that it is quite reasonable to use a two-dimensional Josephson junction array for stimulating the inhomogeneous HTS thin film sample. Our numerical results also show that the EIV signals are influenced by the electron-beam power used in the LTSEM, and a reduction of the electron-beam power is suggested in order to eliminate the errors in estimating the local values of critical temperature Tc and critical current Ic by the sample temperature and the bias current at which the first EIV signal occurs.  相似文献   

14.
Tin oxide thin films were deposited by a novel technique called as modified-SILAR. The preparative parameters were optimized to obtain good quality thin films. As-deposited films were annealed in O2 atmosphere for 1 h at 500 °C. The annealed films were irradiated using Au8+ ions with energy of 100 MeV at different fluencies of 1 × 1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2 using tandem pelletron accelerator. The irradiation-induced modifications in tin oxide thin films were studied using XRD, AFM, optical band gap, photoluminescence and IV measurements. XRD studies showed formation of tin oxide with tetragonal structure. AFM revealed uniform deposition of the material with increase in grain size after irradiation. Decrease in band gap from 3.51 eV to 2.82 eV was seen with increases in fluency. A decrease in PL intensity, and an additional peak was observed after irradiation. IV measurements showed a decrease in resistance with fluency.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

16.
《Current Applied Physics》2015,15(9):964-969
The effect of growth temperature on the phase evolution and morphology change of tin sulfide thin films by electron-beam evaporation was investigated. Orthorhombic tin monosulfide (SnS) was dominant at low growth temperature of 25 °C, whereas a sulfur-rich phase of Sn2S3 coalesced as the growth temperature increased over 200 °C. Thin film growth ceased at 280 °C due to re-evaporation of the tin sulfide. The dependence of growth temperature on the phase evolution of tin sulfide was confirmed by X-ray diffraction, scanning electron microscopy, and UV–Vis spectrophotometry. The lowest electrical resistivity of ∼51 Ω cm, with a majority hole concentration of ∼1017 cm3, was obtained for the film grown at 100 °C, and the resistivity drastically increased with increasing growth temperature. This behavior was correlated with the emergence of resistive sulfur-rich Sn2S3 phase at high temperatures.  相似文献   

17.
Film characterization based on variable-angle spectroscopic ellipsometry (VASE) is desirable in order to understand physical and optical characteristics of thin films. A number of TiO2 film samples were prepared by ion-assisted electron-beam evaporation with 200-nm nominal thickness, 2.0 Å/s deposition rate and 8 sccm oxygen flow rate. The samples were maintained at 250 °C during the deposition, and annealed in air atmosphere afterwards. As-deposited and annealed films were analyzed by VASE, spectrophotoscopy and X-ray diffractometry. From ellipsometry modeling process, the triple-layer physical model and the Cody–Lorentz dispersion model offer the best results. The as-deposited films are inhomogeneous, with luminous transmittance and band gap of 62.37% and 2.95 eV. The 300 °C and 500 °C are transition temperatures toward anatase and rutile phases, respectively. Increasing temperature results in an increase of refractive index, transmittance percentage and band gap energy. At 500 °C, the highest refractive index and band gap energy are obtained at 2.62 and 3.26 eV, respectively. The developed VASE-modeling process should be able to characterize other TiO2 films, using similar physical and optical modeling considerations.  相似文献   

18.
《Current Applied Physics》2020,20(6):788-793
Three-layer thin films of spin-valve type Co/Сu/NixFe100-x at x = 20–80 at.% were prepared by electron-beam sputter deposition. The investigated phase state and magnetoresistive properties were done for as-deposited and annealed to 400, 550, and 700 K films. The measurements of field dependences of magnetoresistance were held at different temperatures. It was demonstrated that phase state, crystal structure, and magnetoresistive properties of Co/Сu/NixFe100-x systems strongly dependent on both NixFe100-x composition NixFe100-x and heat treatment conditions.  相似文献   

19.
The effect of ultraviolet (UV) light irradiation on the nanocrystalline ZnO thin films was investigated. The degree of crystallinity, electrical conductivity, optical properties and surface properties of ZnO thin films were measured as a function of UV irradiation time. It was found that the degree of crystallinity and electrical properties of ZnO films were affected by UV irradiation, however, no noticeable change in the surface morphology was observed. The gas sensing properties of as-deposited and UV irradiated films were also measured. It was observed that the gas sensing properties were affected by the UV irradiation. The irradiation time less than 5 min has improved the sensor while the irradiation time more than 5 min degraded the sensor characteristics for a UV power density of 2.45 W cm−2.  相似文献   

20.
The effect of CO2 laser irradiation on La0.67Ba0.33MnO3 epitaxial thin film was investigated. Epitaxial thin films grown by pulsed laser deposition were irradiated by a CO2 laser in air for 10-60 s. It is shown that after CO2 laser irradiation treatment, the crystallinity of the film is strongly enhanced. It is found that a dramatic decrease in the resistivity of the CO2-laser-irradiated film is accompanied by a remarkable increase in its insulator-metal transition temperature and the temperature coefficient of resistance. This significant improvement of its structure and properties is achieved in several dozens of seconds and surpasses that observed in films annealed in an oxygen atmosphere at 900 °C for 12 h, suggesting that CO2 laser irradiation is a new and effective tool to optimize CMR manganites for bolometric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号