首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
碳锗双桥连二环戊二烯(Me2C)(Me2Ge)(C5H4)2(1)与五羰基铁在回流甲苯及二甲苯中的反应,得到正常的Fe-Fe键化合物(Me2C)(Me2Ge)[(η5-C5H3)Fe(CO)]2(μ-CO)2(3)和脱锗桥产物(Me2C)[(η5-C5H4)Fe(CO)]2(μ-CO)2(4)以及一个结构新颖的化合物(Me2C)[(η5-C5H3)[(Me2Ge)Fe(CO)2](η15-C5H3)[Fe(CO)2](2).用X射线衍射分析測定了化合物3的晶体结构,并提出了可能的生成机理.  相似文献   

2.
The aryldiazenido ligands provide the fourth member of the isoelectronic series CO, NO+, RNC, RN2+ of ligands for transition metal complexes. The first aryldiazenido metal complex was reported in 1964 when p-CH3OC6H4N2Mo(CO)2C5H5 was prepared by the reaction of NaMo(CO)3C5H5 with p-CH3OC6H4N2+BF4. This review surveys the development of organometallic aryldiazenido chemistry since that time. Such organometallic aryldiazenido derivatives, including RN2M(CO)2C5H5, RN2M(CO)2(Pz3BH) (M = Cr, Mo, W), [(η6-Me6C6)Cr(CO)2N2Ar]+, [(MeC15H4)M′(CO)2N2Ar]+ M′ = Mn, Re), [trans-PhN2Fe(CO)2(PPh3)2]+, and PhN2M′(CO)2(PPh3)2(PPh3)2 can be obtained by reactions of arenediazonium salts with suitably chosen transition metal nucleophiles. Analogous methods cannot be used to prepare alkyldiazenido transition metal complexes because of the instability of alkyldiazonium salts. However, the alkyldiazenido derivatives RCH2N2M(CO)2C5H5 (R = H or Me3Si) can be obtained from HM(CO)3C5H5 and the corresponding diazoalkanes. Important aspects of the chemical reactivity of RN2M(CO)2Q derivatives (Q = C5H5, Pz3BH) include CO substitution reactions, coordination of the second nitrogen in the RN2 ligand to give heterobimetallic complexes such as C5H5Mo(CO)2(μ-NNC6H4Me)(CO)2C5H5, oxidative addition rections with X2 X = Cl, Br, I), SnX4, RSSR, and CINO, and reactions with further RN2+ to give bis(aryldiazenido) derivatives (RN2)2MQL+ (L = CO, X, etc.). Dearylation of an aryldiazenido ligand to a dinitrogen ligand can be effected by reaction of [(MeC5H4)M′(CO)2N2Ar]+ with certain nucleophiles to give (MeC5H4)M′(CO)2N2.  相似文献   

3.
The novel alkynyldithiocarboxylate complexes [Fe(η5-C5H5)(S2CCCR) (dppm-P)] (3a,b) and [Fe(η5-C5H5)(S2CCCR)(PPh3)] (4a,b) were obtained through the insertion of CS2 into the iron-akynyl bond in the complexes [Fe(η5-C5H5)(CCR)(L)(L′] L, L′ = dppm R = Ph (1a), tBu(1b); L = (CO), L′ = (PPh3) R = Ph (2a), tBu (2b). Variable-temperature 31P{1H} NMR studies indicate the presence of two different isomers, [Fe(η5-C5H5)(η3-S,C,S′---S2CCCR)(L)(L′)] and [Fe(η5-C5H52-S,S′-S2CCCR)(L)(L′)], which rapidly interconvert at room temperature. The synthesis of the precursor complex [Fe(η5-C5H5)(CCtBu)(CO)(PPh3)] is also described.  相似文献   

4.
The title complex (Me2SiSiMe2)(η5-l-indenyl)Fe(CO)]2(μ-CO)2 (1) was prepared by the reaction of 1,2-bis(1-indenyl)tetramethyl-disilane and Fe(CO)5 in refluxing heptane. Its thermal rearrangement product [Me2Si(η5-1-indenyl)Fe(CO)2]2 (2) was also obtained from the reaction. 1 in refluxing xylene can be readily converted into 2. The crystal structures of the cis isomer 1c and the trans isomer 2t were determined by X-ray diffraction.  相似文献   

5.
The reaction of K[ReH6(PPh3)2] with [RhCl(CO)L2] [L= PPh3, 1,2,5-triphenylphosphole (TPP), or P(OMe)3] leads to the new electronically unsaturated heterobimetallic polyhydride complexes [(CO)(PPh3)2HRe(μ-H)3RhL2] in moderate-to-good yields. The structures of these complexes have been established on the basis of spectroscopic data, especially 1H and 31P NMR. The bridging hydride ligands are fluxional but there is either a slow or nonexistent exchange between terminal and bridging hydrides. For L = PPh3 or TPP, protonation with tetrafluoroboric acid affords quantitatively the cationic complexes [(CO)(PPh3)2HRe(μ-H)3RhHL2]+, isolated as the BF4 or the BPh4 salts.  相似文献   

6.
Reaction of [U(TpMe2)2(NR2)] (R = Ph, SiMe3) with protic substrates such as 2,4,6-trimethylphenol (HOC6H2-2,4,6-Me3), 3,5-dimethylpyrazole (Hdmpz), 2-mercaptopyridine (HSC5H4N) and phenylacetylene (HCCPh) afforded the corresponding [U(TpMe2)2(OAr)] (Ar = C6H2-2,4,6-Me3) (1), [U(TpMe2)2(dmpz)] (2), [U(TpMe2)22-SC5H4N)] (3), and [U(TpMe2)2(CCPh)] (4) compounds. Reaction of [U(TpMe2)2(NR2)] with Me3SnCl or Me3SiBr gave [U(TpMe2)2Cl] (5) and [U(TpMe2)2Br] (6), respectively, in high yield. The amido precursors failed to react with cyclopentadiene, but metathesis of [U(TpMe2)2I] with NaCp yielded [U(κ3-TpMe2)(κ2-TpMe2)(η5-Cp)] (7). Thermolysis of 7 resulted in oxidation of the metal centre and redistribution of the ligands, giving [UCp3(dmpz)] (8), pyrazabole (9) and [U(TpMe2)(dmpz)3] (10). The complexes have been fully characterized by spectroscopic methods and the structures of 1, 2, and 5 were confirmed by X-ray crystallographic studies. In the solid state the complexes exhibit distorted pentagonal bipyramidal geometries.  相似文献   

7.
The tetrathiomolybdate ion [MoS4]2− reacts in DMF solution with Roussin esters Fe2(SR)2(NO)4 (R = Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, n-C5H11) to yield the paramagnetic iron nitrosyls [Fe(NO)2(SR)2] (1), [Fe(NO)2(S2MoS2] (2) and [Fe(NO)(S2MOS2)2] (3). The new complexes (2) and (3) have been characterized by EPR spectroscopy and the assignment to them of constitutions based respectively upon tetrahedral and square pyramidal iron is supported by EHMO calculations. Fe2(SPh)2(NO)4 with [MoS4]2− yields only [Fe(NO)2(SPh)2], and preformed (3) reacts with PhS to give firstly EPR-silent species, and then [Fe(NO)2(SPh)2]. The mononitrosyl (3) can also be formed by reaction of [MoS4]2− with [Fe4S3(NO)7], Fe4S4(NO)4, or Fe2I2(NO)4.  相似文献   

8.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

9.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


10.
Three tetranuclear clusters [Ru4H4(CO)11(PPh3)] (1), [Ru4H2(CO)12(PPh3)] (2) and [Ru3IrH(CO)12(PPh3)] (3) were formed in the reaction of [Ir(CO)Cl(PPh3)2] and Na[Ru3H(CO)11] in tetrahydrofuran. Complexes 1–3 were characterized by IR and 1H and 31P NMR, and the structure of the clusters was confirmed by single crystal X-ray analysis. In 2 and 3 one of the carbonyls bridges between two ruthenium atoms; otherwise the compounds contain only terminal carbonyls.  相似文献   

11.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

12.
Miho Fujita  R. D. Gillard 《Polyhedron》1988,7(24):2731-2742
Stable aqueous solutions of the green ion [Co(sa1)3]3− (sa1 = dianion, C6H4( )(CO ), of salicylic acid, 2-hydroxybenzoic acid) are obtained from [Co(NH3)5 C1]C12 and an excess of salicylic acid. Several salts, [C][Co(sa1)3] have been characterized, where C = [Co(NH3)6]3+ and [M(en)3]3+ (M = Co or Rh, EN = 1,2-diamino-ethane). By using (+)-[Rh(en)3]3+, optical resolution via less soluble diastereoisomeric salts has been achieved, and isomerization and racemization have been studied. Resolved tris-malonatocobaltate(III) has been used as a model. A novel thermochromism (77-293 K) in solid Δ(+)-[Rhen3]Λ[Co(sa1)3 is described.  相似文献   

13.
The reactions of a wide range of transition-metal carbonyls with anhydrous HF are described. In particular, Ru3(CO)12, Os3(CO)12 and Ir4(CO)12 give the solution stable [Ru3(CO)12H]+, [Ru(CO)5H]+, [Os3(CO)12H]+, [Os(CO)5H]+ and [Ir4(CO)12H2]2+ respectively, which have been characterised by a combination of 1H and 13C NMR spectroscopy.  相似文献   

14.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

15.
The anion [Fe4S3(NO)7] undergoes slow exchange with labelled nitrite [15NO2] to yield a product [Fe4S3(14NO)(15NO)6] in which complete isotopic exchange has occurred at the basal Fe(NO)2 groups, but with no exchange at the apical Fe(NO) group. The neutral Fe4S4(NO)4 reacts rapidly with [15NO2 to give fully exchanged [Fe4S3(15NO)7], and it is proposed that the conversion proceeds by fragmentation, followed by complete isotopic exchange and rapid reassembly. The binuclear anion [Fe2S2(NO)4]2− also yields, with [15NO2]2− in CD2Cl2 solution, the fully exchanged [Fe4S3(15NO)7], and a mechanism involving successive fragmentation, exchange and reassembly steps is proposed; however in aqueous solution, a clean exchange reaction occurs to give [Fe2S2(15NO)4]2−. Neutral binuclear esters Fe2(SR)2(NO)4 (R = Me, Et, or Ph) with [14NO2] yield the mononuclear paramagnetic [Fe(14NO)2(14NO2)2], and with [15NO2] the analogous [Fe(15NO)2(15NO2)2].  相似文献   

16.
Syntheses of the novel sandwich compounds [Fe(η5-C5H5)(η5-C2R2P3)] and [Fe(η5-C5H5)(η5-C2R2P3)W(CO)5], (R = But), are described. The mode of attachment of the [W(CO)5] fragment in the latter compound has been determined by NMR and single crystal X-ray diffraction studies.  相似文献   

17.
The syntheses of the 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane-supported imido complexes [M(NR)(R′3tach)Cl2] (M = Ti or Zr (NMR only); R = But or 2,6-C6H3Pri2; R′ = Me or But) are reported, along with that of the thermally robust dibenzyl derivative [Ti(NBut)(Me3tach)(CH2Ph)2]. The tert-butylimido ligand in [Ti(NBut)(Me3tach)Cl2] undergoes exchange with ArNH2 (Ar = 4-C6H4Me or 2,6-C6H4Me or 2,6-C6H3Pri2) to form the corresponding arylimides [Ti(NAr)(Me3tach)Cl2]. The Me3tach ring in [Ti(NR)(Me3tach)Cl2] undergoes slow exchange with But3tach or Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) to give the ring-exchanged products [Ti(NR)(But3tach)Cl2] and [Ti(NR)(Me3tacn)Cl2], respectively. The complexes [Ti(NR)(Me3tach)X2] (R = But or 2,6-C6H3Pri2; X = Cl or CH2Ph) exhibit room-temperature dynamic NMR behaviour via an unusual trigonal twist of the facially coordinated Me3tach ligand, and the activation parameters for these processes have been measured and are discussed. The X-ray structures of [Ti(NR)(But3tach)Cl2] (R = But or 2,6-C6H3Pri2) and [Ti(NBut)(Me3tach)(X)2] [X= Cl or CH2Ph) are reported. Me3tach and But3tach = 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane, respectively.  相似文献   

18.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

19.
Pentacarbonyl-rhenate and -manganate react with the cationic complexes [cpMo(CO)2(diene)]+, [cpMo(CO)2(cyclopentadiene]+, [cpMo(CO)2(cyclohexadiene)]+, [cpMo(CO)2(trimethylenemethane]+, [(OC)3Mo(η7-C7H7)]+, [cp(OC)-(Ph3P)Mo(alkyne)]+ to give the corresponding heteronuclear hydrocarbon-bridged complexes.  相似文献   

20.
CpCo(CO)2 is oxidised by [Cp2Fe]BF4 (Cp = C5H5) in the presence of neutral ligands L to give the dications [CpCoL3]2+ (L = SMe2, S(n-C4H9)2, PMe3, C5H5N, MeCN; Me = CH3). In [CpCo(SMe2)3]2+, sulfane ligands are substituted by neutral ligands L, L---L and L---L---L, to give the complexes [CpCoL3]2+ (L = SeMe2, TeMe2, PMe3, P(OMe)3, AsMe3, SbMe3, t-C4H9NC, C5H5N, MeCN), [Cp-Co(L---L)SMe2]2+ (L---L = R2P(CH2)nPR2, n = 1, 2, R = C6H5; bipyridine, o-phenanthroline, neocuproin) and [CpCo(L---L---L)]2+ (L---L---L = RP(CH2CH2PR2)2, R = C6H5). The dications react with iodide resulting in the monocations [CpCoL2I]+ and [CpCo(L---L)I]+. Azacobaltocinium cations [CpCo(C4R2H2N)]+ (R = H, CH3) are obtained by reaction of [CpCo(SMe2)3]2+ with metal pyrrolides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号