首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report herein a comprehensive theoretical study of the thermodynamics and kinetics of molecular hydrogen activation by frustrated Lewis pairs (FLPs). A series of intermolecularly combined boranes (Lewis acids) and phosphines (Lewis bases), with experimentally established different reactivities towards H2, have been subjected to DFT and (SCS‐)MP2 calculations, and analyzed in terms of their structural properties, the energetics of association of the FLPs, and the kinetics of their interactions with H2 and hydrogenation to the ion‐pair products. The analysis included the following steps: 1) assessment of the ability/inability of the Lewis species to preorganize into FLPs with an optimum arrangement of the acid and base sites for preconditioning the reaction with H2, 2) comprehension of the different thermodynamics of hydrogenation of the selected FLPs by comparing the Gibbs energies of the overall reactions, and 3) estimation of the mechanism of the activation of H2 by identifying the reaction steps and the associated kinetic barriers. The results of our studies correlate well with experimental findings and have clarified the reasons for the observed different reactivities of the investigated systems, ranging from reversible or nonreversible activation to no reaction with H2. The derived predictions could assist the future design of Lewis acid–base systems with desired properties and applicability as metal‐free hydrogenation catalysts.  相似文献   

2.
Nowadays, hydrogen activation by frustrated Lewis pairs (FLPs) and their applications are one of the emerging research topics in the field of catalysis. Previous studies have shown that the thermodynamics of this reaction is determined by electronic structures of FLPs and solvents. Herein, we investigated systems consisting of typical FLPs and ionic liquids (ILs), which are well known by their large number of types and excellent solvent effects. The density functional theory (DFT) calculations were performed to study the thermodynamics for H2 activation by both inter- and intra-molecular FLPs, as well as the individual components. The results show that the computed overall Gibbs free energies in ILs are more negative than that computed in toluene. Through the thermodynamics partitioning, we find that ILs favor the H−H cleavage elemental step over the elemental steps of proton attachment, hydride attachment and zwitterionic stabilization. Moreover, the results show that these effects are strongly dependent on the type of FLPs, where intra-molecular FLPs are more affected compared to the inter-molecular FLPs.  相似文献   

3.
Frustrated Lewis pairs (FLPs) of Lewis acid (LA) B(C6F5)3 and Lewis base hydrosilane [SiH] have been utilized to promote controlled polymerization of a challenging β-substituted Michael acceptor, methyl crotonate (MC), devoid of chain transfer side reactions. Mechanistic studies show that chain initiation involves LA-catalyzed 1,4-hydrosilylation of MC with [SiH] via FLP-type activation, generating a silyl ketene acetal nucleophile that participates in chain propagation via classic LA activation of monomer and a bimolecular conjugate addition mechanism. The role of the LA is conflicting in the two different catalytic cycles: the FLP activation in chain initiation requires LA-substrate (monomer) dissociation (or weak interaction) while the classic LA activation in chain propagation demands LA-monomer association (or strong interaction).  相似文献   

4.
《Tetrahedron letters》2014,55(51):6959-6964
The activation of H2 for the catalytic hydrogenation of unsaturated compounds is one of the most useful reactions in both academia and chemical industry, which has long been predominated by the transition-metal catalysis. However, metal-free hydrogen activation represents a formidable challenge, and has been less developed. The recent emerging chemistry of frustrated Lewis pairs (FLPs) with a combination of sterically encumbered Lewis acids and Lewis bases provides a promising approach for metal-free hydrogenation due to their amazing abilities for the challenging H2 activation. In the past several years, the hydrogenation of a wide range of unsaturated compounds using FLP catalysts has been successfully developed. Despite these advances, the corresponding asymmetric hydrogenation is just in its start-up step. Similar to the mode of HH bond activation, SiH bond can also be activated by FLPs for the hydrosilylation of ketones and imines. But its asymmetric version is also not well-solved. This Letter will outline the recent important progress of metal-free catalytic asymmetric hydrogenation and hydrosilylation using FLP catalysts.  相似文献   

5.
In recent years ‘frustrated Lewis pairs’ (FLPs) have been shown to be effective metal‐free catalysts for the hydrogenation of many unsaturated substrates. Even so, limited functional‐group tolerance restricts the range of solvents in which FLP‐mediated reactions can be performed, with all FLP‐mediated hydrogenations reported to date carried out in non‐donor hydrocarbon or chlorinated solvents. Herein we report that the bulky Lewis acids B(C6Cl5)x(C6F5)3?x (x=0–3) are capable of heterolytic H2 activation in the strong‐donor solvent THF, in the absence of any additional Lewis base. This allows metal‐free catalytic hydrogenations to be performed in donor solvent media under mild conditions; these systems are particularly effective for the hydrogenation of weakly basic substrates, including the first examples of metal‐free catalytic hydrogenation of furan heterocycles. The air‐stability of the most effective borane, B(C6Cl5)(C6F5)2, makes this a practically simple reaction method.  相似文献   

6.
Boron-enriched scaffolds have demonstrated unique features and promising performance in the field of catalysis towards the activation of small gas molecules. However, there is still a lack of facile approaches capable of achieving high B doping and abundant porous channels in the targeted catalysts. Herein, construction of boron- and nitrogen-enriched nanoporous π-conjugated networks (BN-NCNs) was achieved via a facile ionothermal polymerization procedure with hexaazatriphenylenehexacarbonitrile [HAT(CN)6] sodium borohydride as the starting materials. The as-produced BN-NCN scaffolds were featured by high heteroatoms doping (B up to 23 wt. % and N: up to 17 wt. %) and permanent porosity (surface area up to 759 m2 g−1 mainly contributed by micropores). With the unsaturated bonded B species acting as the active Lewis acid sites and defected N species acting as the active Lewis base sites, those BN-NCNs delivered attractive catalytic performance towards H2 activation/dissociation in both gaseous and liquid phase, acting as efficient metal-free heterogeneous frustrated Lewis pairs (FLPs) catalysts in hydrogenation procedures.  相似文献   

7.
Despite the high levels of interest in the synthesis of bio-inspired [FeFe]-hydrogenase complexes, H2 oxidation, which is one specific aspect of hydrogenase enzymatic activity, is not observed for most reported complexes. To attempt H–H bond cleavage, two disubstituted diiron dithiolate complexes in the form of [Fe2(μ-pdt)L2(CO)4] (L: PMe3, dmpe) have been used to play the non-biomimetic role of a Lewis base, with frustrated Lewis pairs (FLPs) formed in the presence of B(C6F5)3 Lewis acid. These unprecedented FLPs, based on the bimetallic Lewis base partner, allow the heterolytic splitting of the H2 molecule, forming a protonated diiron cation and hydrido-borate anion. The substitution, symmetrical or asymmetrical, of two phosphine ligands at the diiron dithiolate core induces a strong difference in the H2 bond cleavage abilities, with the FLP based on the first complex being more efficient than the second. DFT investigations examined the different mechanistic pathways involving each accessible isomer and rationalized the experimental findings. One of the main DFT results highlights that the iron site acting as a Lewis base for the asymmetrical complex is the {Fe(CO)3} subunit, which is less electron-rich than the {FeL(CO)2} site of the symmetrical complex, diminishing the reactivity towards H2. Calculations relating to the different mechanistic pathways revealed the presence of a terminal hydride intermediate at the apical site of a rotated {Fe(CO)3} site, which is experimentally observed, and a semi-bridging hydride intermediate from H2 activation at the Fe–Fe site; these are responsible for a favourable back-reaction, reducing the conversion yield observed in the case of the asymmetrical complex. The use of two equivalents of Lewis acid allows for more complete and faster H2 bond cleavage due to the encapsulation of the hydrido-borate species by a second borane, favouring the reactivity of each FLP, in agreement with DFT calculations.

Bio-inspired [FeFe]-hydrogenase complexes and B(C6F5)3 form FLPs that are able to activate H2, providing rare examples of inverted enzymatic reactivity. The influence of the symmetry/asymmetry of coordination is studied via DFT.  相似文献   

8.
We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5‐dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical‐based, redox pathway involves the homolytic cleavage of H2, in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.  相似文献   

9.
Metal‐free systems, including frustrated Lewis pairs (FLPs) have been shown to bind CO2. By reducing the Lewis acidity and basicity of the ambiphilic system, it is possible to generate active catalysts for the deoxygenative hydroboration of carbon dioxide to methanol derivatives with conversion rates comparable to those of transition‐metal‐based catalysts.  相似文献   

10.
Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form “classical” Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically “frustrated Lewis pairs (FLPs)” is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter‐ or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C6F5)2 components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H+/H? pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal‐free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three‐component reactions, offering new strategies for synthetic chemistry.  相似文献   

11.
The purpose of this work was to study the kinetics of wood pyrolysis in the presence of inorganic salts, representatives of classes of alkali and alkaline earth metal halides (NaCl, KCl, KBr, CaCl2, BaCl2·2H2O) and Lewis acids (AlCl3·6H2O, FeCl3·6H2O, CuCl2, CuBr2, ZnCl2·1.5H2O, NiCl2·6H2O, SnCl2·2H2O) using TG-DSC. The activity of these catalysts was estimated by the temperature of the beginning of pyrolysis, charcoal yield and kinetic parameters, such as energy of activation and reaction order. Using the Lewis acids as catalysts for pyrolysis leads to a decrease in the temperature of the process beginning and the activation energy. In the presence of other catalysts activation energy does not significantly change. The increase of a seeming reaction order in the presence of Lewis acids possibly is a consequence of complication of the thermodestruction mechanism, with the appearance of new parallel competing stages.   相似文献   

12.
The heterolytic cleavage of dihydrogen constitutes the hallmark reaction of frustrated Lewis pairs (FLP). While being well-established for planar Lewis acids, such as boranes or silylium ions, the observation of the primary H2 splitting products with non-planar Lewis acid FLPs remained elusive. In the present work, we report bis(perfluoro-N-phenyl-ortho-amidophenolato)silane and its application in dihydrogen activation to a fully characterized hydridosilicate. The strict design of the Lewis acid, the limited selection of the Lewis base, and the distinct reaction conditions emphasize the narrow tolerance to achieve this fascinating process with a tetrahedral Lewis acid.  相似文献   

13.
The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1-BR2-2-[(Me2N)2C=N]-C6H4 ( 3 – 6 ) [BR2=BMes2 ( 3 ), BC12H8, ( 4 ), BBN ( 5 ), BBNO ( 6 )] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR2)-2-[(Me2N)2C=NH]-C6H4 (R=Ph, H) and reacted with ammonia, BnNH2 and pyrrolidine, to generate the FLP adducts 1-(R2HN→BR2)-2-[(Me2N)2C=NH]-C6H4, where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H2, HBPin and PhSiH3 to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.  相似文献   

14.
The detailed mechanisms of the Lewis acid‐catalyzed transesterification of β‐oxodithioesters at a solvent‐free condition were studied using density functional theory. Five possible reaction pathways, including one noncatalyzed (channel 1) and four Lewis acid‐catalyzed channels (SnCl2‐catalyzed channels 2 and 3 and SnCl2·2H2O‐catalyzed channels 4 and 5), were investigated. Our calculated results indicate that the energy barriers of the catalyzed channels are significantly lower than that of channel 1. Channel 5, which has an energy barrier of 33.70 kcal/mol as calculated at the B3LYP/[6‐31G(d, p)+LANL2DZ] level, is the most energy‐favorable channel. Moreover, one water molecule of SnCl2·2H2O participated in the transesterification in channel 5. Thus, we report a novel function of the SnCl2·2H2O catalyst, which is quite different from the function of the conventional nonhydrated Lewis acid SnCl2. To understand the function of these two Lewis acid catalysts better, the global reactivity indexes and natural bond orbital charge were analyzed. This work helps in understanding the function of the Lewis acid in transesterification, and it can provide valuable insight for the rational design of new Lewis acid catalysts. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The vicinal P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 undergoes 1,1‐carboboration reactions with the Me3Si‐substituted enynes to give ring‐enlarged functionalized C3‐bridged P/B FLPs. These serve as active FLPs in the activation of dihydrogen to give the respective zwitterionic [P]H+/[B]H? products. One such product shows activity as a metal‐free catalyst for the hydrogenation of enamines or a bulky imine. The ring‐enlarged FLPs contain dienylborane functionalities that undergo “bora‐Nazarov”‐type ring‐closing rearrangements upon photolysis. A DFT study had shown that the dienylborane cyclization of such systems itself is endothermic, but a subsequent C6F5 migration is very favorable. Furthermore, substituted 2,5‐dihydroborole products are derived from cyclization and C6F5 migration from the photolysis reaction. In the case of the six‐membered annulation product, a subsequent stereoisomerization reaction takes place and the resultant compound undergoes a P/B FLP 1,2‐addition reaction with a terminal alkyne with rearrangement.  相似文献   

16.
Frustrated Lewis pairs (FLPs) consist of sterically hindered Lewis acids and Lewis bases, which provide high catalytic activity towards non‐metal‐mediated activation of “inert” small molecules, including CO2 among others. One critical issue of homogeneous FLPs, however, is their instability upon recycling, leading to catalytic deactivation. Herein, we provide a solution to this issue by incorporating a bulky Lewis acid‐functionalized ligand into a water‐tolerant metal‐organic framework (MOF), named SION‐105 , and employing Lewis basic diamine substrates for the in situ formation of FLPs within the MOF. Using CO2 as a C1‐feedstock, this combination allows for the efficient transformation of a variety of diamine substrates into benzimidazoles. SION‐105 can be easily recycled by washing with MeOH and reused multiple times without losing its identity and catalytic activity, highlighting the advantage of the MOF approach in FLP chemistry.  相似文献   

17.
The solvent is of prime importance in biomass conversion as it influences dissolution, reaction kinetics, catalyst activity and thermodynamic equilibrium of the reaction system. So far, activity-based models were developed to predict kinetics and equilibria, but the influence of the catalyst on kinetics has not been succesfully predicted by thermodynamic models. In this work, the thermodynamic model ePC-SAFT advanced was used to predict the activities of the reactants and of the catalyst at various conditions (temperature, reactant concentrations, γ-valerolactone GVL cosolvent addition, catalyst concentration) for the homogeneously acid-catalyzed esterification of levulinic acid (LA) with ethanol. Different kinetic models were applied, and it was found that the catalyst influence on kinetics could be predicted correctly by simultaneously solving the dissociation equilibrium of H2SO4 catalyst along the reaction coordinate and by relating reaction kinetics to proton activity. ePC-SAFT advanced model parameters were only fitted to reaction-independent phase equilibrium data. The key reaction properties were determined by applying ePC-SAFT advanced to one experimental kinetic curve for a set of temperatures, yielding the reaction enthalpy at standard state , activation energy and the intrinsic reaction rate constant k=0.011 s−1 at 323 K, which is independent of catalyst concentration. The new procedure allowed an a-priori identification of the effects of catalyst, solvent and reactant concentration on LA esterification.  相似文献   

18.
Carbon dioxide (CO2, a common combustion pollutant) releasing continuously into the atmosphere is primarily responsible for the rising atmospheric temperature. Therefore, CO2 sequestration has been an indispensable area of research for the past several decades. On the other hand, the concept of aromaticity is often employed in designing chemical reactions and metal‐free frustrated Lewis pairs (FLPs) have proved ideal reagents to achieve CO2 reduction. However, considering FLP and aromaticity together is less developed in CO2 capture. Here we report theoretical investigations on the aromaticity‐promoted CO2 activation, involving heterocyclopentadiene‐bridged P/N‐FLPs. The calculations reveal that furan‐ and pyrrole‐bridged P/N‐FLPs can make CO2 capture both thermodynamically and kinetically favorable (with activation energies of 5.4–7.7 kcal mol?1) due to the aromatic stabilization of the transition states and products. Our findings could open an avenue to the design of novel FLPs for CO2 capture.  相似文献   

19.
Frustrated Lewis pairs (FLPs) are now ubiquitous as metal-free catalysts in an array of different chemical transformations. In this paper we show that this reactivity can be transferred to a polymeric system, offering advantageous opportunities at the interface between catalysis and stimuli-responsive materials. Formation of cyclic carbonates from cyclic ethers using CO2 as a C1 feedstock continues to be dominated by metal-based systems. When paired with a suitable nucleophile, discrete aryl or alkyl boranes have shown significant promise as metal-free Lewis acidic alternatives, although catalyst reuse remains illusive. Herein, we leverage the reactivity of FLPs in a polymeric system to promote CO2/cyclic ether coupling catalysis that can be tuned for the desired epoxide or oxetane substrate. Moreover, these macromolecular FLPs can be reused across multiple reaction cycles, further increasing their appeal over analogous small molecule systems.

Polymeric frustrated Lewis pairs catalyse the coupling of epoxides and oxetanes with CO2 with high selectivity under mild CO2 pressures across multiple reaction cycles.  相似文献   

20.
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal–organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2. This FLP catalyst can heterolytically dissociate H2 into active Hδ−, thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号