首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we review the progress in the development of imaging fiber chemical sensors. Emphasis is placed on the chemical sensor component and the fabrication of architectures appropriate for multi-analyte sensing, such as optical fiber sensors. Two main approaches in the fabrication of such sensors will be highlighted: first, sensors made with spatially-resolved sensing sites by site-selective polymerization, second, sensors prepared by random distribution of microsphere sensors on an optical imaging fiber containing thousands of μm-scale wells. Examples of each are given.  相似文献   

2.
Oxygen indicators and intelligent inks for packaging food   总被引:6,自引:0,他引:6  
The detection of oxygen using optical sensors is of increasing interest, especially in modified atmosphere food packaging (MAP), in which the package, usually containing food, is flushed with a gas, such as carbon dioxide or nitrogen. This tutorial review examines the ideal properties of an oxygen optical sensor for MAP and compares them with those developed to date, including the most recent advances. The basic technologies underpinning the different indicator types are described, examples given and their potential for application in MAP assessed. This tutorial review should be of interest to the MAP industry and researchers in optical sensors and oxygen sensing.  相似文献   

3.
光纤氧传感器技术进展   总被引:2,自引:0,他引:2  
综述了近年来国内外光纤氧传感器技术的研究及应用情况,探索了光纤和荧光指示剂的进展,阐述了氧传感技术和制作氧传感膜的机理及光纤氧传感器的应用情况,并展望了光纤氧传感器的发展趋势。  相似文献   

4.
Hakonen A  Strömberg N 《The Analyst》2012,137(2):315-321
A basic square root function was successfully used as a diffusion consistent calibration function that considers depletion mechanisms often occurring within optical chemical sensors. This continuous function improved image quality and simplified the calibration process. It may be a universal tool for the typical response function of reversible diffusion controlled sensing reactions. Further, we demonstrate that the gold nanoparticle interaction based ammonium fluorosensor is suitable for non-invasive high-resolution quantitative imaging of complex samples. The plasmon sensitized optical sensors were utilized as a bioanalytical tool for chemical imaging of natural degradation processes occurring in biological tissues. Analytical performance of the nanoparticle enhanced sensors confirmed superior sensitivity, reversibility, durability and overall image quality over non-doped sensing membranes. Although applied in a complex matrix of high potassium (major interferent) and very high sodium (interferent) excellent performance is achieved. The nanoparticle interaction/coextraction based sensing scheme utilized in this study is general and can be used for numerous ions, preferably combined with the diffusion consistent calibrations for superior analytical performance. A table with 44 commercially available ionophores is provided to guide potential users of this sensor configuration.  相似文献   

5.
Optical fibres provide a universal sensing platform as they are easily integrated with a multitude of different sensing schemes. Such schemes enable the preparation of a multitude of sensors from relatively straightforward pH sensors, to more complex ones, including artificial olfaction sensors, high-density oligonucleotide arrays, and high-throughput cell-based arrays. Imaging fibre bundles comprised of thousands of fused optical fibres are the basis for an optically connected, individually addressable parallel sensing platform. Fibre optic imaging bundles possess miniature feature sizes (3-10 micron diameter fibres), allowing high-density sensor packing (approximately 2 x 10(7) sensors per cm2). Imaging fibre bundles transmit coherent images enabling combined imaging and sensing, relating the responses monitored by the sensor to observable physical changes. The individual fibre cores can also be selectively etched to form a high-density microwell array capable of housing complementary sized microsensors. The miniature feature sizes facilitate a faster response and more sensitive measurement capabilities. The platform is extremely versatile in its sensing design, allowing the sensing scheme to be tailored to fit the experimental design, whether for monitoring single analytes or more complex multiplexed assays. A number of sensing schemes and applications are described in this review.  相似文献   

6.
Fluorescence imaging techniques involving chemical sensors are essential tools in many fields of science and technology because they enable the visualization of parameters which exhibit no intrinsic color or fluorescence, for example, oxygen, pH value, CO(2), H(2)O(2), Ca(2+), or temperature, to name just a few. This Review aims to highlight the state of the art of fluorescence sensing and imaging, starting from a comprehensive overview of the basic functional principles of fluorescent probes (or indicators) and the design of sensor materials. The focus is directed towards the progress made in the development of multiple sensors and methods for their signal read out. Imaging methods involving optical sensors are applied in quite diverse scientific areas, such as medical research, aerodynamics, and marine research.  相似文献   

7.
杨杨  高超颖  许良  段莉梅  李斌 《应用化学》2014,31(10):1123-1134
罗丹明以其良好的光稳定性、光物理性质和荧光效应得到了人们的极大重视。 基于罗丹明的螺环衍生物与被检测物质作用开环而产生荧光响应的特性,将两个或多个罗丹明母体单元构筑到包含特异性的识别单元的探针分子中,形成多枝的罗丹明酰肼类荧光探针,不仅可以弥补单分子探针的某些功能缺陷,而且可以使其具有更高灵敏度、更高选择性和可靠性,更加有利于分析检测。 本文着重从设计原理、识别性能、应用范围等方面介绍了多枝罗丹明探针在Hg2+、Cu2+、Fe3+和Al3+等离子检测中发展趋势,并展望了这类荧光探针在活细胞金属离子光学成像的应用前景。  相似文献   

8.
One of the most severe environmental problems is heavy metal contamination, putting the world's sustainability at risk. Much effort has been put into developing sensors that can be taken anywhere to detect the environmental effects of heavy metals. Sensitivity, selectivity, multiplexed detection ability, and mobility enhance significantly when nanoparticles and nanostructures are incorporated into sensors. LDHs (layered double hydroxides) have gotten much attention in analytical chemistry in recent years because of their benefits, including their large specific surface area, ease of synthesis, low cost, and high catalytic efficiency and biocompatibility. LDHs are often manufactured as nanomaterial composites or created with specialized three-dimensional structures depending on the application. However, in these settings, LDHs (as color indicators, extracting sorbents, and electrochemical sensing) are usually restricted. Upcoming signs of progress and development possibilities of LDHs in analytical chemistry are reviewed in this paper to assist overcome these problems. Furthermore, the approaches used in the design of LDHs, including structural aspects, are defined and assessed in preparation for future analytical applications. The latest advances in optical and electrochemical sensors to detect heavy metals are described in this review. The sorts and characteristics of LDHs will be explored first. We will then go into microelectrode (or nanoelectrode) arrays, nanoparticle-modified electrodes, and microfluidic optical and electrochemical sensing assays in detail. This paper also discusses design strategies for LDH-based nanostructured sensors and the advantages of using nanomaterials and nanostructures.  相似文献   

9.
Nanomaterials have gained considerable attention over the last decade, finding applications in emerging fields such as wearable sensors, biomedical care, and implantable electronics. However, these applications require miniaturization operating with extremely low power levels to conveniently sense various signals anytime, anywhere, and show the information in various ways. From this perspective, a crucial field is technologies that can harvest energy from the environment as sustainable, self-sufficient, self-powered sensors. Here we revisit recent advances in various self-powered sensors: optical, chemical, biological, medical, and gas. A timely overview is provided of unconventional nanomaterial sensors operated by self-sufficient energy, focusing on the energy source classification and comparisons of studies including self-powered photovoltaic, piezoelectric, triboelectric, and thermoelectric technology. Integration of these self-operating systems and new applications for neuromorphic sensors are also reviewed. Furthermore, this review discusses opportunities and challenges from self-powered nanomaterial sensors with respect to their energy harvesting principles and sensing applications.  相似文献   

10.
This paper reviews recent developments in the design and application of two types of optical nanosensor, those based on: (1) localized surface plasmon resonance (LSPR) spectroscopy and (2) surface-enhanced Raman scattering (SERS). The performance of these sensors is discussed in the context of biological and chemical sensing. The first section addresses the LSPR sensors. Arrays of nanotriangles were evaluated and characterized using realistic protein/ligand interactions. Isolated, single nanoparticles were used for chemosensing and performed comparably to the nanoparticle array sensors. In particular, we highlight the effect of nanoparticle morphology on sensing response. The second section details the use of SERS sensors using metal film over nanosphere (MFON) surfaces. The high SERS enhancements and long-term stability of MFONs were exploited in order to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture.  相似文献   

11.
Chemical sensing and imaging with metallic nanorods   总被引:3,自引:0,他引:3  
In this Feature Article, we examine recent advances in chemical analyte detection and optical imaging applications using gold and silver nanoparticles, with a primary focus on our own work. Noble metal nanoparticles have exciting physical and chemical properties that are entirely different from the bulk. For chemical sensing and imaging, the optical properties of metallic nanoparticles provide a wide range of opportunities, all of which ultimately arise from the collective oscillations of conduction band electrons ("plasmons") in response to external electromagnetic radiation. Nanorods have multiple plasmon bands compared to nanospheres. We identify four optical sensing and imaging modalities for metallic nanoparticles: (1) aggregation-dependent shifts in plasmon frequency; (2) local refractive index-dependent shifts in plasmon frequency; (3) inelastic (surface-enhanced Raman) light scattering; and (4) elastic (Rayleigh) light scattering. The surface chemistry of the nanoparticles must be tunable to create chemical specificity, and is a key requirement for successful sensing and imaging platforms.  相似文献   

12.
Ma Q  Su X 《The Analyst》2011,136(23):4883-4893
As a unique nanomaterial, quantum dots (QDs) are not only applied in fluorescent labeling and biological imaging, but are also utilized in novel sensing systems. Because QDs have attractive optoelectronic characteristics, QD-based sensors present high sensitivity in detecting specific analytes in the chemical and biochemical fields. In this review, we describe the basic principles and different conjugation strategies in QD-based sensors. An overview of recent advances and various models of QD-sensing systems is also provided. Furthermore, perspectives for sensors based on QDs are discussed.  相似文献   

13.
A sixteen component array of acid-base and metal ion sensors was synthesized and covalently immobilized onto a transparent cellulose-based membrane. Dye synthesis and cellulose dyeing were carried out in one-pot, parallel, microscale reactions not requiring any isolation or purification steps. In addition, pH and metal ion optical sensing properties of the sixteen component array have been tested using a high-throughput screening based on digital imaging analysis.  相似文献   

14.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   

15.
Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates.  相似文献   

16.
The discharge of heavy metal ions into water resources as a result of human activities has become a global issue. Contamination with heavy metal ions poses a major threat to the environment and human health. Therefore, there is a dire need to probe the presence of heavy metal ions in a more selective, facile, quick, cost-effective and sensitive way. Conventional sensors are being utilized to sense heavy metal ions; however, various challenges and limitations like interference, overlapping of oxidation potential, selectivity and sensitivity are associated with them that limit their in-field applicability. Hence, nanomaterial based chemical sensors have emerged as an alternative substitute and are extensively employed for the detection of heavy metal ions as a potent analytical tool. The incorporation of nanomaterials in sensors increases their sensitivity, selectivity, portability, on-site detection capability and device performance. Nanomaterial based electrodes exhibit enhanced performance because surface of electrode at nano-scale level offers high catalytic potential, large active surface area and high conductivity. Therefore, this review addresses the recent progress on chemical sensors based on different nanomaterials such as carbon nanotubes (CNTs), metal nanoparticles, graphene, carbon quantum dots and nanocomposites for sensing heavy metals ions using different sensing approaches. Furthermore, various types of optical sensors such as fluorescence, luminescence and colorimetry sensors have been presented in detail.  相似文献   

17.
Because some metal ions are highly toxic even at trace level, a constant demand of developing methods for monitoring and removing these metal ions is extremely urgent. Silica-based optical chemosensors are supposed as good alternatives to classical instrumental methods for detecting and adsorbing metal ions, due to their effect and lower price. Silica nanoparticles, silica gel and mesoporous silica are used as supporting platforms to fabricate optical chemosensors. They have certain properties containing high porosity and expectant adsorption capacity. Chromogenic-type and fluorogenic-type optical probes, such as azobenzene, naphthalimide and rhodamine, are grafted to the surface of silica-based materials by sol–gel reaction, the limit of detection, response time and selective properties of optical sensors are improved sequentially. In this paper, the articles of silica-based optical chemosensors are retrospected since 2008, describing silica-based optical sensors used for sensing metal ions. The sensing mechanism, optical phenomenon, detection limit, adsorption capacity and application are also reviewed.  相似文献   

18.
Detection of small metabolite biomarkers at different concentrations could be powerfully used for disease diagnosis and progression. To enhance detection capabilities, nanomaterials possessing excellent optical and electrochemical properties have been integrated into a wide range of sensing or detection platforms. This review will highlight recent developments in creating electrochemical sensors alongside biosensors using carbon nanomaterials and metallic nanoparticles that target small metabolites. Moreover, electrochemical sensors having different detection strategies toward metabolites (such as amino acids, amino acid–derived neurotransmitters, vitamins, adenosine triphosphate, and purine derivatives) will be discussed. Finally, certain challenging issues and future aspects of nanomaterials-integrated electrochemical sensors for small metabolites will be discussed.  相似文献   

19.
Washburn AL  Bailey RC 《The Analyst》2011,136(2):227-236
By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.  相似文献   

20.
Spherical photonic crystals (PCs), generated by assembly of monodisperse colloidal nanospheres in a spherical confined geometry, attract great attention recently owing to their potential applications in the fields of displays, sensors, optoelectronic devices, and others. Compared to their conventional film or bulk counterparts, the optical stop band of the spherical PCs is independent of the rotation under illumination of the surface of a fixed incident angle of the light, broadening their applications. In this paper, we will review recent advances in the field of spherical PCs including design, preparation and potential applications. Various preparation strategies for spherical PCs, including solvent-evaporation induced crystallization method, microfluidic-assisted approach, and others are outlined. Their applications based on the unique optical properties (such as photonic band gaps and structural colors) for sensing and displaying are then presented, followed by the perspective of this emerging field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号