首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Spray, ignition and combustion characteristics of biodiesel fuels were investigated under a simulated diesel-engine condition (885 K, 4 MPa) in a constant volume combustion vessel. Two biodiesel fuels originated from palm oil and used cooking oil were used while JIS#2 used as the base fuel. Spray images were taken by a high speed video camera by using Mie-scattering method to measure liquid phase penetration and liquid length. An image intensifier combined with OH filter was used to obtain OH radical image near 313 nm. Ignition and combustion characteristics were studied by OH radical images. Biodiesel fuels give appreciably longer liquid lengths and shorter ignition delays. At low injection pressure (100 MPa), biodiesel fuels give shorter lift-off lengths than those of diesel. While at high injection pressure (200 MPa), the lift-off length of biodiesel fuel originated palm oil gives the shortest value and that of biodiesel from used cooking oil gives the longest one. Air entrainment upstream of lift-off length of three fuels was estimated and compared to soot formation distance. This study reveals that the viscosity and ignition quality of biodiesel fuel have great influences on jet flame structure and soot formation tendency.  相似文献   

2.
This paper describes an experimental investigation of the feasibility of an “intermittent” active control approach for suppressing combustion instabilities in liquid fueled combustors. The developed controller employs a “smart” fuel injector that can modify the spray properties in response to changes in combustor operating conditions. This action weakens or breaks up the coupling between the combustion process and combustor acoustic modes oscillations, thus preventing the excitation of large amplitude instabilities. This approach differs significantly from previously proposed active control methods, both in concept and implementation, as it requires only “intermittent” modification of the combustion process by a single control action as opposed to the continuous action required by most other active control methods. The “smart” fuel injector used in this study consisted of a double-staged, air-assisted atomizer in which counter swirling, primary (inner stage) and secondary (outer stage) air streams were supplied to the injector through separate sets of tangentially oriented orifices. Control of the ratio of air mass flow rates supplied to these two stages, by use of a diverter valve, resulted in significant changes in the spray shape and its axial, tangential, and radial velocity components. This variation in spray properties of the “smart” injector was characterized for different values of the inner to outer air flow rate ratio in cold flow tests with a PDPA system. These results were then correlated with the characteristics of the “intermittently” controlled combustor. Measured quantities included the instability amplitudes, axial dependence of the mean and oscillatory heat release amplitudes, and the characteristics of the recirculation zones, which were all shown to depend on the fuel spray properties. The results of this study demonstrate the feasibility of using “smart” fuel injectors with capabilities for varying the combustion process characteristics to reduce the amplitudes of detrimental combustion instabilities in real engines to acceptable levels.  相似文献   

3.
Partly due to stringent restrictions on pollutant emissions, aeronautical engine manufacturers target lean operating conditions which raise new difficulties such as combustion stability as well as ignition and re-ignition at high altitude. The injection of liquid fuel introduces additional complexity due to the spray-flame interaction. It is then crucial to better understand the physics behind these phenomena and to develop the capacity to predict them in an industrial context. In this work, a comprehensive joint experimental and numerical investigation of the academic swirled-confined version of the KIAI-Spray burner is carried out. Experimental diagnostics, such as Phase Doppler Anemometry (PDA), Planar Laser Induced Fluorescence (OH-PLIF), high-speed visualization and high-speed particle image velocimetry (HS-PIV), together with Large Eddy Simulations coupled to Discrete Particle Simulations are used to study spray flame structure and spray ignition. The analysis of the swirled-stabilized spray flame highlights the main effects of the presence of droplets on the turbulent combustion, and the complementarity and validity of the joint experiment and simulation approach. Ignition sequences are then studied. Both experiment and simulation show the same behaviors, and relate the flame kernel evolution and the possible success of ignition to the local non reacting flow properties at the sparking location, in terms of turbulence intensity and presence of droplets.  相似文献   

4.
Simulation of spray combustion in a lean-direct injection combustor   总被引:3,自引:0,他引:3  
Large-eddy simulation (LES) of a liquid-fueled lean-direct injection (LDI) combustor is carried out by resolving the entire inlet flow path through the swirl vanes and the combustor. A localized dynamic subgrid closure is combined with a subgrid mixing and combustion model so that no adjustable parameters are required for both non-reacting and reacting LES. Time-averaged velocity predictions compare well with the measured data. The unsteady flow features that play a major role in spray dispersion, fuel–air mixing and flame stabilization are identified from the simulation data. It is shown that the vortex breakdown bubble (VBB) is smaller with more intense reverse flow when there is heat release. The swirling shear layer plays a major role in spray dispersion and the VBB provides an efficient flameholding mechanism to stabilize the flame.  相似文献   

5.
Three-dimensional n-heptane spray flames in a swirl combustor are investigated by means of direct numerical simulation (DNS) to provide insight into realistic spray evaporation and combustion as well as relevant modeling issues. The variable-density, low-Mach number Navier–Stokes equations are solved using a fully conservative and kinetic energy conserving finite difference scheme in cylindrical coordinates. Dispersed droplets are tracked in a Lagrangian framework. Droplet evaporation is described by an equilibrium model. Gas combustion is represented using an adaptive one-step irreversible reaction. Two different cases are studied: a lean case that resembles a lean direct injection combustion, and a rich case that represents the primary combustion region of a rich-burn/quick-quench/lean-burn combustor. The results suggest that premixed combustion contribute more than 70% to the total heat release rate, although diffusion flame have volumetrically a higher contribution. The conditional mean scalar dissipation rate is shown to be strongly influenced, especially in the rich case. The conditional mean evaporation rate increases almost linearly with mixture fraction in the lean case, but shows a more complex behavior in the rich case. The probability density functions (PDF) of mixture fraction in spray combustion are shown to be quite complex. To model this behavior, the formulation of the PDF in a transformed mixture fraction space is proposed and demonstrated to predict the DNS data reasonably well.  相似文献   

6.
Higher engine efficiency and ever stringent pollutant emission regulations are considered as the most important challenges for today's automotive industry. Fast evaporation and combustion technique has caused unprecedented attention due to its potential to solve both of the above challenges. Flash boiling, which features a two-phase flow that constantly generates vapor bubbles inside the liquid spray is ideal to achieve fast evaporation and combustion inside direct-injection (DI) gasoline engines. In this study, three spray conditions, including liquid, transitional flash boiling and flare flash boiling spray were studied for comparison under cold start condition in a spark-ignition direct-injection (SIDI) optical gasoline engine. Optical access into the combustion chamber includes a quartz linear and a quartz insert on the piston. In separate experiments, we recorded the crank angle resolved spray morphology using laser scattering technique, and distribution of fuel before ignition employing laser induced fluorescence technology, as well as time-resolved color images of flame with high-speed camera. The spray morphology during the intake stroke shows stronger plume-plume and plume-air interaction under flash boiling condition, as well as smaller penetration. Then around the end of compression (before ignition), the fuel distribution is also shown to be more homogeneous with less cyclic variation under flash boiling. Finally, from the color images of the flame, it was found that with the increase of superheat degree, the diffusion rate of blue flame (generated by excited molecules) is higher, which is considered to be related with the larger fractal dimension of the flame front. Also, the combustion is more complete with less yellow flame under flash boiling.  相似文献   

7.
The effect of inlet swirl on the flow development and combustion dynamics in a lean-premixed swirl-stabilized combustor has been numerically investigated using a large-eddy-simulation (LES) technique along with a level-set flamelet library approach. Results indicate that when the inlet swirl number exceeds a critical value, a vortex-breakdown-induced central toroidal recirculation zone is established in the downstream region. As the swirl number increases further, the recirculation zone moves upstream and merges with the wake recirculation zone behind the centerbody. Excessive swirl may cause the central recirculating flow to penetrate into the inlet annulus and lead to the occurrence of flame flashback. A higher swirl number tends to increase the turbulence intensity, and consequently the flame speed. As a result, the flame surface area is reduced. The net heat release, however, remains almost unchanged because of the enhanced flame speed. Transverse acoustic oscillations often prevail under the effects of strong swirling flows, whereas longitudinal modes dominate the wave motions in cases with weak swirl. The ensuing effect on the flow/flame interactions in the chamber is substantial.  相似文献   

8.
An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.  相似文献   

9.
Detailed investigations of turbulent spray combustion are very challenging due to the complexity of the underlying physicochemical processes. Experimentally, laboratory-scale burners are increasingly used to investigate these processes and support model development. One ultimate objective of these studies would be to deliver suitable benchmark data. In the present paper, the focus is similar but relying exclusively on direct numerical simulations. Conditions close that found in lab-scale burners are considered in the simulations, so that direct comparisons will ultimately become possible. The current analysis concentrates on the temporal evolution of temperature and concentrations of OH, CH2O, and CH4. The profiles of these variables show very complex features, therefore separate zones corresponding to characteristic physicochemical regimes have been tracked in time and space. It is found that, based on the temperature profile, four different zones coexist in the domain, associated to different degrees of competition between evaporation and reaction. It is observed that high concentrations of CH2O and CH4 can be used to delineate between three characteristic locations: 1) the evaporation zone; 2) close to the jet tip, at high temperatures; and 3) regions where evaporated droplets are entrained by mixing. This study demonstrates that direct numerical simulation of small spray burners can be used to deliver important information and to contribute useful benchmark data.  相似文献   

10.
The effect of stoichiometry on the combustion behavior of the nanoscale aluminum molybdenum trioxide (nAl/MoO3) thermite was studied in a burn tube experiment by characterizing the propagation velocity and pressure output of the reaction. Changing the stoichiometry affects the combustion through changes in the product temperature, phase, and composition. The mixture ratios of the composites were varied over an extremely wide range (5% nAl (95% MoO3)–90% nAl (10% MoO3)). Results revealed three separate combustion regimes: a steady high speed propagation (100 to 1000 m/s) from approximately 10% to 65% nAl, an oscillating and accelerating wave near 70% nAl, and a steady-slow speed propagation (0.1–1 m/s) from approximately 75% to 85% nAl. Propagation was observed to fail both <10% nAl and >85% nAl. This is the first known observation of such limits for a nanoscale thermite in a tube geometry. The instrumented tube tests revealed peak pressures over 8 MPa near stoichiometric conditions in the steady high speed propagation region, no measurable pressure rise at low speed propagation, and building pressures for accelerating waves. The results suggest the propagation mode to be a supersonic convective wave for near stoichiometric mixtures and a conductive deflagration for extremely fuel-rich mixtures. The implications of these results for microscale combustion applications are discussed.  相似文献   

11.
In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.  相似文献   

12.
Tracks made in minerals by the electronic stopping of uranium fission fragments provide a modern geological dating tool, and are believed also to yield specific information on the low-temperature thermal history of rocks. Experimental work showing that the damaged crystal lattice along a fission track recovers primarily as a function of temperature ignored the fact that the basic theory of atomic diffusion requires an exponential decrease in the intrinsic diffusion coefficient with increasing pressure. Here, fission track recovery was experimentally investigated in basic apatite under the simultaneous influences of temperature, pressure and stress. We show that track fading is a complex recovery mechanism responding to several environmental physical parameters simultaneously. In particular a strong decrease in the track recovery rate was observed as a function of increasing pressure. And a nearly temperature-independent recovery was observed in samples under stress.  相似文献   

13.
14.
The propagation of premixed flames in adiabatic and non-catalytic planar microchannels subject to an assisted or opposed Poiseuille flow is considered. The diffusive–thermal model and the well-known two-step chain-branching kinetics are used in order to investigate the role of the differential diffusion of the intermediate species on the spatial and temporal flame stability. This numerical study successfully compares steady-state and time-dependent computations to the linear stability analysis of the problem. Results show that for fuel Lewis numbers less than unity, LeF < 1, and at sufficiently large values of the opposed Poiseuille flow rate, symmetry-breaking bifurcation arises. It is seen that small values of the radical Lewis number, LeZ, stabilise the flame to symmetric shape solutions, but result in earlier flashback. For very lean flames, the effect of the radical on the flame stabilisation becomes less important due to the small radical concentration typically found in the reaction zone. Cellular flame structures were also identified in this regime. For LeF > 1, flames propagating in adiabatic channels suffer from oscillatory instabilities. The Poiseuille flow stabilises the flame and the effect of LeZ is opposite to that found for LeF < 1. Small values of LeZ further destabilise the flame to oscillating or pulsating instabilities.  相似文献   

15.
This paper describes the effect of pressure on some the mechanical properties of transition metals Cu, Ag, and Au, such as elastic constants and bulk modulus. Using molecular dynamics (MD) simulation, the present study was carried out using the modified many-body Morse potential function expression in the framework of the Embedded Atom Method (EAM). The effect of pressure on equilibrium volume, elastic constants, and bulk modulus were determined, and found to be in agreement with other theoretical calculations and experimental data.  相似文献   

16.
This paper reports the effect of inlet flow turbulence intensity on the combustion instability characteristics in a backward facing step combustor. The inlet turbulence intensity is varied by a turbulence generator. Unsteady pressure measurements and OH* chemiluminescence images are recorded over a wide range of operating conditions at different inlet turbulence intensities. The study shows an early onset of instability at low turbulence level, i.e., higher turbulence postpones the onset of instability to higher Reynolds number Re and/or higher equivalence ratio Φ. The early onset of instability in the Re and Φ parameter spaces is due to the change in system parameters such as flame speed and size of the recirculation zone downstream of the step at different turbulence levels. Further, the onset is characterized as subcritical bifurcation. At low Re, the hysteresis zone width is small for low turbulence levels and it is large at higher turbulence levels; and at higher Re, the hysteresis width remains constant at all turbulence levels. Investigation of instability characteristics reveals that there are momentary slippages from limit cycle orbit into brief silent regimes in an intermittent manner. The frequency of occurrence of the momentary silent regimes increases with reduction in turbulence, indicating that higher turbulence helps in maintaining the system in a stable limit cycle orbit. High-speed chemiluminescence imaging reveals the necessity of the vortex rollup in the recirculation zone to grow up to the top wall by dilatation from the heat release for the onset of instability. Considerations of the effect of turbulence on both the flame speed and the recirculation zone size together explain all the observed bifurcation trends. These results suggest that inlet flow turbulence should not just be considered as background noise. The turbulence effects on both the flame and flow should be considered in predicting the instability characteristics.  相似文献   

17.
CO2-expanded organic solvent is a kind of important fluid medium and has broad applications in chemical industry, environmental protection and other fields. Ultrasonic cavitation in gas expanded liquids (GXLs) is conducive to enhancing mass transfer and producing many exciting phenomena. In this paper, the ultrasonic cavitations and streaming in the saturated CO2-expanded liquid N, N-dimethylformamide (DMF) at 4.2 MPa and 5.2 MPa are observed by a high-speed camera. The cavitation intensity and time trace of pressure pulses are recorded using a PZT hydrophone. The influences of gas–liquid equilibrium pressure and ultrasonic power on the cluster dynamics of transient and stable cavitation are examined. The excess molar enthalpies required for CO2 dissociation from DMF are calculated by Peng-Robinson equations of state and the change of surface free energy of CO2-expanded DMF is predicted. The results show that the excess enthalpy of the mixture is one of the key factors to control ultrasonic cavitation at high pressurized conditions, while the surface tension is the key factor for low pressure. As the increase of applied ultrasonic power, the formation and collapsing frequency of bubble clusters increases, and the amplitude and cyclic frequency of pressure pulse are enhanced. The transient cavitation intensity increases as it reaches a maximum value at a certain ultrasonic power and then decreases. The change trends of stable cavitation intensity under different pressures are basically same. It can be concluded from the evidence that ultrasonic cavitation in CO2-expanded DMF is affected by the combined effect of compression and substitution: compression depresses the nucleation and growth of bubbles, while the high solubility of CO2 in DMF is conducive to the generation of bubbles in cavitation.  相似文献   

18.
波纹板式空冷器阻力与传热特性实验研究   总被引:5,自引:0,他引:5  
在可改变风量和热水流量的实验条件下,对波纹板式空冷器的阻力与传热特性进行实验研究。得到了空气侧的阻力降关联式以及两侧的对流换热系数关联式,其适用于热水雷诺数在2000-8000之间、空气雷诺数在2000-10000之间。在相同工况下,比较了波纹板式、光管式和翅片管式空冷器的性能指标,结果表明:迎面风速在2.45-4.1 m/s之间,波纹板式空冷器传热系数达到100-160 W/m2/℃;约比光管式提高70%,但只有以管束外表面为基准的翅片管式传热系数的六分之一;板式空冷器单位体积换热量约是翅片管式空冷器的1.5倍,是光管式的15倍;板式空冷器单位功耗换热量约是光管式空冷器的5.5倍,而翅片管式空冷器与光管式空冷器则相差不大。  相似文献   

19.
<正>Taking into account both gain/loss and time-dependent atomic scattering length,this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive parabolic potential. Due to the balance of the scattering length and gain/loss,the bright solitary wave is shown to have constant amplitude. Especially,it is found that the bright solitary wave is accelerated by expulsive force,whose velocity can be modulated by changing the axial and transverse angular frequencies.The results are in good agreement with the experimental observations by Khaykovich et al(2002 Science 296 1290).  相似文献   

20.
《中国物理 B》2021,30(7):77308-077308
Pb(111) film is a special system that exhibits strong quantum size effects in many electronic properties. The collective excitations, i.e., plasmons, in Pb(111) films are also expected to show signatures of the quantum size effect. Here, using high-resolution electron energy loss spectroscopy, we measured the plasmons on the surface of Pb(111) films with different film thicknesses and analyzed the plasmon dispersions. One surface plasmon branch exhibits prominent damping in the small momentum range, which can be attributed to the interaction between the top and bottom interfaces of the Pb(111)films. With the film thickness increasing, the critical momentum characterizing the damping in Pb(111) films decays not only much slower in Pb(111) films than in other metal films, and even in films with the thickness up to 40 monolayers the damping still exists. The slow decay of the surface plasmon damping, manifesting the strong quantum size effect in Pb(111) films, might be related to the strong nesting of the Fermi surface along the(111) direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号