首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The externally prepared black-coloured copper oxide (T? 700 K, PO2 ? 100 torr) on a Cu(100) surface is identified by electron spectroscopy as CuO. Compared to the red-coloured Cu(I) oxide (in situ oxidation at T ? 400 K, PO2 ? 0.5 torr, ~ 109 L), the He(I)- excited photoemisson from CuO reveals characteristic shake-up satellites 10–12 eV below EF and a broadened emission from overlapping oxygen-induced 2p and Cu 3d states. From the AES and ELS results, in correlation with the data from core electron spectroscopy, chemical shifts of Cu 2p, Cu 3s and Cu 3p in CuO to higher binding energy and decreases in binding energy of the oxygen-induced states were deduced. The unoccupied electron states of Cu at 5 and 7.5 eV above EF — postulated from the ELS results — are preserved in Cu2O and CuO compounds. Annealing of the Cu(II) oxide at 670 K is accompanied by decomposition into Cu2O due to the solid-state reaction following the scheme: 2CuO → 1/2 O2 + Cu2O.  相似文献   

2.
We present a summary of results of systematic first principles calculations of the electronic and geometric structures of the Cu2O(1 0 0) surface and the process of CO oxidation on this surface (energetics and pathways of adsorption, diffusion and reactions of CO and O2 on the surface). The (p, T) phase diagram of the Cu2O(1 0 0) in equilibrium of with gas phase O2 built using the ab initio thermodynamics approach suggests that the O-terminated surface is preferred over the Cu-terminated one within the entire ranges of pressures and temperatures in which the compound exists. Metastable Cu-terminated Cu2O(1 0 0) is found to undergo a surface reconstruction in agreement with experiment. We find CO to oxidize spontaneously on the O-terminated Cu2O(1 0 0) surface by consuming surface O atoms. Our calculations also show that the surface O-vacancies left in the course of the CO oxidation can be easily filled with dissociative adsorption of the gas phase O2 molecules, which are usually present in reaction environment.  相似文献   

3.
MnO2-based catalysts have attracted great attention in the field of elemental mercury (Hg0) catalytic oxidation because of their superior catalytic performance and wide temperature window. Quantum chemistry calculations based on density functional theory (DFT) combined with periodic slab models were carried out to investigate the heterogeneous mechanism of Hg0 oxidation by oxygen species (gas-phase O2, chemisorbed oxygen, and lattice oxygen) on MnO2 surface. The results indicate that Hg0 and HgO are chemically adsorbed on MnO2 surface with the adsorption energies of ?69.50 and ?226.48?kJ/mol, respectively. The adsorption of O2 on MnO2 surface belongs to chemisorption. O2 can decompose on MnO2 surface with an energy barrier of 97.46?kJ/mol to produce two atomic adsorbed oxygen. The perpendicular adsorbed O2 and dissociative adsorbed O2 are more favorable for Hg0 catalytic oxidation than lattice oxygen, and perpendicular adsorbed O2 is the most active oxygen for Hg0 oxidation. The reaction pathway of Hg0 oxidation by perpendicular adsorbed O2 includes three reaction steps: Hg0?→?Hg(ads)?→?HgO(ads)?→?HgO. The third step (HgO(ads)?→?HgO) is endothermic by 168.17?kJ/mol with an energy barrier of 179.48?kJ/mol, and it is the rate-limiting step of the whole Hg0 oxidation reaction.  相似文献   

4.
《Current Applied Physics》2015,15(11):1303-1311
Spin-polarized density functional theory calculations were performed to investigate the magnetism of bulk and Cu2O surfaces. It is found that bulk Cu2O, Cu/O-terminated Cu2O(111) and (110) surfaces have no magnetic moment, while, the O-terminated Cu2O(100) and polar O-terminated Cu2O(111) surfaces have magnetism. For low index surfaces with cation and anion vacancy, we only found that the Cu vacancy on the Cu2O(110) Cu/O-terminated surface can induce magnetism. For atomic and molecular oxygen adsorption on the low index surfaces, we found that atomic and molecular oxygen adsorption on the Cu-terminated Cu2O(110) surface is much stronger than on the Cu/O-terminated Cu2O(111) and Cu-terminated Cu2O(100) surfaces. More interesting, O and O2 adsorption on the surface of Cu/O terminated Cu2O(111) and O2 adsorption on the Cu-terminated Cu2O(110) surface can induce weak ferromagnetism. In addition, we analysis origin of Cu2O surfaces with magnetism from density of state, the surface ferromagnetism possibly due to the increased 2p–3d hybridization of surface Cu and O atoms. This is radically different from other systems previously known to exhibit point defect ferromagnetism, warranting a closer look at the phenomenon.  相似文献   

5.
The microscopic reaction mechanism for CO oxidation on Cu(3 1 1) surface has been investigated by means of comprehensive density functional theory (DFT) calculations. The elementary steps studied include O2 adsorption and dissociation, dissociated O atom adsorption and diffusion, as well as CO adsorption and oxidation on the metal. Our results reveal that O2 is considerably reactive on the Cu(3 1 1) surface and will spontaneously dissociate at several adsorption states, which process are highly dependent on the orientation and site of the adsorbed oxygen molecule. The dissociated O atom may likely diffuse via inner terrace sites or from a terrace site to a step site due to the low barriers. Furthermore, we find that the energetically most favorable site for CO molecule on Cu(3 1 1) is the step edge site. According to our calculations, the reaction barrier of CO + O → CO2 is about 0.3 eV lower in energy than that of CO + O2 → CO2 + O, suggesting the former mechanism play a main role in CO oxidation on the Cu(3 1 1) surface.  相似文献   

6.
Cu-based oxides oxygen carriers and catalysts are found to exhibit attractive activity for CO oxidation, but the dispute with respect to the reaction mechanism of CO and O2 on the CuO surface still remains. This work reports the kinetic study of CO oxidation on the CuO (111) surface by considering the adsorption, reaction and desorption processes based on density functional theory calculations with dispersion correction (DFT-D). The Eley–Rideal (ER) CO oxidation mechanism was found to be more feasible than the Mars-van-Krevelen (MvK) and Langmuir–Hinshelwood (LH) mechanisms, which is quite different from previous knowledge. The energy barrier of ER, LH, and MvK mechanisms are 0.557, 0.965, and 0.999 eV respectively at 0 K. The energy barrier of CO reaction with the adsorbed O species on the surface is as low as 0.106 eV, which is much more active in reacting with CO molecules than the lattice O of CuO (111) surface (0.999 eV). A comparison with the catalytic activity of the perfect Cu2O (111) surface shows that the ER mechanism dictates both the perfect Cu2O (111) and the CuO (111) surface activity for CO oxidation. The activity of the perfect Cu2O (111) surface is higher than that of the perfect CuO (111) surface at elevated temperatures. A micro-kinetic model of CO oxidation on the perfect CuO (111) surface is established by providing the rate constants of elementary reaction steps in the Arrhenius form, which could be helpful for the modeling work of CO catalytic oxidation.  相似文献   

7.
Peculiarities of the chemical structure of bulk polycrystalline samples of the high-temperature superconductors Bi2Sr2CaCu2O8, BiSrCaCu2O5.5, BiSrCaCu3O8, and YBa2Cu3O7 ? δ have been investigated in detail at room and superconducting temperatures on an X-ray electron magnetic spectrometer equipped with an attachment for low-temperature studies. It is shown that covalent bonding is formed at a superconducting temperature between copper and oxygen due to Cu2+ ions. Due to the enhancement of the d(Cu)–p(O) hybridization of copper and oxygen electrons in the superconducting state, the d-electron density increases near E F. The occurrence of additional peaks in the O1s and Sr3d (Ba3d) spectra after transition of the system to the superconducting state indicates changes in the nearest environment of O and Sr (Ba) atoms, in particular, the transition of Sr atoms to a higher oxidation state.  相似文献   

8.
《Applied Surface Science》1986,26(2):219-229
XPS and AES techniques were employed to study the surface segregation and oxidation of Cu-1at%In alloy. Surface segregation of In has been observed with an enthalpy of segregation of about −34 kJ/mol. The surface oxidation of the Cu-In alloy at 480 K showed first a formation of Cu2O on the alloy surface. The displacement reaction 3Cu2O + 2In → 6Cu + In2O3 occurred on the alloy surface, on further heating of the oxidized surface in vacuum at 700 K. XPS and UPS techniques were employed to study the oxygen interaction with Cu-5at%Au and Cu-11at%Au alloys. At 300 K, oxygen was dissociatively chemisorbed on the Cu sites of the Cu-11% Au alloy surface, and the oxygen desorbed on heating. TDS study showed that desorption follows second order kinetics with an activation energy of desorption of about 75 kJ/mol.  相似文献   

9.
Pyrite (FeS2) oxidation during coal combustion is one of the main sources of harmful SO2 emission from coal-fired power plants. Density functional theory (DFT) study was performed to uncover the evolution mechanism of SOx formation during pyrite oxidation. The results show that chemisorption mechanism is responsible for O2, SO2 and SO3 adsorption on FeS2 surface. The presence of formed oxidation layer (Fe2O3) weakens the interaction between O2 molecule and FeS2 surface. The adsorbed O2 molecule easily dissociates into active surface O atom for SOx formation. The dissociation reaction of O2 is activated by 77.38?kJ/mol, and exothermic by 138.46?kJ/mol. Compared to the further oxidation of SO2 into SO3, SO2 prefers to desorb from FeS2 surface. The dominant reaction pathway of SO2 formation from the oxidation of the outermost FeS2 surface layer is a three-step process: surface lattice S oxidation, SO2 desorption and replenishment of S vacancy by activated surface O atom. The elementary reaction of surface lattice S oxidation has an activation energy barrier of 197.96?kJ/mol, and is identified as the rate-limiting step. SO2 formation from the further oxidation of bulk FeS2 layer is controlled by a four-step process: bulk lattice S migration, lattice S oxidation, SO2 desorption and surface O atom deposition. Migration of lattice S from bulk position to the outermost surface shows a high activation energy barrier of 175.83?kJ/mol. The deposition process of surface O atom is a relatively easy step, and is activated by 21.05?kJ/mol.  相似文献   

10.
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation.  相似文献   

11.
The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm?1 < E T < 24500 cm?1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s?1 Torr?1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.  相似文献   

12.
The adsorption, diffusion and dissociation properties of O2 on the icosahedron (Ih) Ni@Pt12 core-shell nanoparticle were investigated using the ab initio density functional theory calculations. It is found that, compared with the Pt(111) surface, the Ih Ni@Pt12 core-shell nanoparticle can enhance the adsorption, diffusion and dissociation of O2, as well as the adsorption and diffusion of the atomic O (the dissociation product of O2), and therefore serve as a good catalyst for oxygen reduction reaction. Our study gives a reasonable theoretical explanation to the high catalytic activity of the Ni@Pt core-shell nanoparticles for the oxygen reduction reaction.  相似文献   

13.
The coverages of adsorbed oxygen and CO on an Ir(111) surface have been determined using X-ray photoelectron spectroscopy (XPS) during the steady-state catalytic production of CO2. Correlating the coverages of the reacting adsorbates with the rate of CO2 production allows the kinetics of the CO oxidation reaction to be determined. The reaction is found to obey a Langmuir-Hinshelwood rate expression of the form RCO22 = k0[CO][O]exp(?EakT), where RCO2 is the rate of CO2 production, k0 is the pre-exponential factor of the reaction rate coefficient, [CO] and [O] are the surface coverages of CO and oxygen, respectively, and Ea is the activation energy for the oxidation reaction. The activation energy for this catalytic oxidation reaction is found to be approximately 9 kcalmole.  相似文献   

14.
The diffusion of110Ag in Cu2O has been measured by a serial-sectioning technique as a function of temperature (700–1132°C) and oxygen partial pressure (6 × 10?6 ?8 × 10?2 atm). The data are fit to the defect model for Cu2O developed by the authors in the preceding paper. Silver ions have a larger impurity-vacancy binding free energy and/or a larger jump frequency for the singly charged cation vacancies relative to that for the neutral cation vacancies. The activation enthalpies for the diffusion of copper and silver ions in Cu2O are nearly equal, but the absolute value of D1Ag is about three times larger than D1Cu even though the silver ion is 31% larger than the copper ion.  相似文献   

15.
Homogeneous CaO-P2O5 and Cu2O-CaO-P2O5 glasses were prepared using a melt-quenched method under controlled conditions. The binary glasses were found to be colourless and transparent while the ternary glasses changed from light green to dark green as the Cu2O content increased. From the absorption edge studies, the values of the optical band gap, Eopt and Urbach energy, ΔE were evaluated. The position of the absorption edge and hence the optical band gap were found to depend on the glass composition. Analysis of the optical band gap shows that for the binary glasses, the value increases as the content of CaO decreases, while for the ternary glasses, the value of the optical band gap increases as the content of the Cu2O decreases. The density of the glasses was also measured and was found to increase with the increase in CaO and Cu2O contents.  相似文献   

16.
The Y3d, Ba3d 5/2, Cu2p 3/2, and O1s X-ray photoelectron spectra of thick (600 nm) superconducting YBa2Cu3O7 ? δ films deposited on textured Ni-W substrates with Y2O3 + ZrO2 and CeO2 buffer layers have been studied. It has been established that, after the mechanical removal of surface layers with a diamond scraper (and as the analyzed region of the film approaches the interface), a decrease in the oxygen content leads to a decrease of the orthophase fraction and an increase of the tetraphase and Cu+ ion fractions. This is caused by the presence of elastic stresses in the superconducting film due to the lattice misfit between the phases making up a composite sample. These stresses prevent oxygen diffusion involved in oxidizing annealing. The spectra of the superconducting film have not revealed signals generated by elements of the substrate and buffer layers.  相似文献   

17.
Density functional theory (DFT) cluster model calculations on methanol reactions on the β-Ga2O3 (1 0 0) surface have been realized. β-Ga2O3 structure has tetrahedral and octahedral ions and the results of gallia-methanol interaction are different depending on the local surface chemical composition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The unsaturated surface oxygen atoms strongly oxidize the methanol molecule. CO2 and H2O molecules are produced when methanol reacts with a free oxygen vacancy surface on octahedral gallium sites. On the other hand, H2CO is found after the reaction of this molecule with a free O vacancy surface on tetrahedral gallium sites. A weak interaction between the remaining CO2 molecule and the oxide surface was found, being this molecule easy to desorb. Otherwise, H2CO has a stronger surface bond and it could suffer a later oxidation.  相似文献   

18.
The temperature-programmed reaction (TPR) method, high-resolution electron energy loss spectroscopy (HREELS), and molecular beam method were used to elucidate the role surface reconstruction, subsurface oxygen (Osubs), and COads concentration play in the low-temperature oxidation of CO on the Pt(100), Pt(410), Pd(111), and Pd(110) surfaces. The possibility of the formation of so-called hot oxygen atoms, which arise at the surface at the instant of dissociation of O2ads molecules and can react with COads at low temperatures (~150 K) to form CO2, was examined. It was revealed that, when present in high concentration, COads initiates the phase transition of the Pt(100)-(hex) reconstructed surface into the (1 × 1) non-reconstructed one and blocks fourfold hollow sites of oxygen adsorption (Pt4-Oads), thereby initiating the formation of weakly bound oxygen (Pt2-Oads), active in CO oxidation. For the Pt(410), Pd(111), and Pd(110) surfaces, the reactivity of Oads with respect to CO was demonstrated to be dependent on the surface coverage of COads. The 18Oads isotope label was used to determine the nature of active oxygen reacting with CO at ~150–200 K. It was examined why a COads layer produces a strong effect on the reactivity of atomic oxygen. The experimental results were confirmed by theoretical calculations based on the minimization of the Gibbs energy of the adsorption layer. According to these calculations, the COads layer causes a decrease in the apparent activation energy E act of the reaction due to changes in the type of coordination and in the energy of binding of Oads atoms to the surface.  相似文献   

19.
A polycrystalline silver surface has been studied by synchrotron radiation photoelectron spectroscopy after deep oxidation by microwave discharge in an O2 atmosphere. Oxidized structures with high oxygen content, AgOx with x > 1, have been found on the silver surface after oxidation at 300–400 K. The line shapes observed in the O1s spectra were decomposed into five components and indicated that complex oxidized species were formed. An analysis of the oxidized structures with binding energies, Еb(O1s), greater than 530 eV pointed to the presence of both Ag–O and O–O bonds. We have carried out a detailed experimental study of the valence band spectra in a wide spectral range (up to 35 eV), which has allowed us to register the multicomponent structure of spectra below Ag4d band. These features were assigned to the formation of Ag–O and O–O bonds composed of molecular (associative) oxygen species. DFT model calculations showed that saturation of the defect oxidized silver surface with oxygen leads to the formation of associative oxygen species, such as superoxides, with electrophilic properties and covalent bonding. The high stability of oxygen-rich silver structures, AgOx, can be explained by the formation of small silver particles during the intensive MW oxidation, which can stabilize such oxygen species.  相似文献   

20.
Measurements of the coefficient of elastic reflection of very low energy electrons at Cu(001), Cu(001) (2 × 4)45°O and Cu(001)c(2 × 2)N surfaces are reported. The measurements refer to normally-incident electrons with kinetic energies E in the range 0.5–22 eV. The elastic reflection coefficient Rel was determined from separate observations of the total reflection coefficient and of the energy distribution of reflected electrons. For Cu(001) Rel is 0.55 at E = 0.5 eV and drops monotonically to 0.03 with increasing E, the maximum slope being at E = 3 eV. Theoretical calculations of Rel are reported. The reflection amplitude of the substrate crystal was parameterized using existing results of accurate band structure calculations, and the surface scattering matrix was evaluated for assumed surface scattering potentials. It is shown that to fit the observed Rel it is necessary to take account of both the image potential and the extension of the imaginary part of the crystal scattering potential into vacuum. From the fit, the range of the imaginary potential is 1.0 Å. For Cu(001) (2 × 4)45°O and Cu(001)c(2 × 2)N the values of Rel at E = 0.5 eV were 0.35 and 0.15, respectively. The effect of adsorption in reducing Rel is especially marked for E < 2 eV. Adsorption of either O or N results in an additional peak in Rel near E = 12 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号