首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pilot-ignited dual fuel combustion involves a complex transition between the pilot fuel autoignition and the premixed-like phase of combustion, which is challenging for experimental measurement and numerical modelling, and not sufficiently explored. To further understand the fundamentals of the dual fuel ignition processes, the transient ignition and subsequent flame development in a turbulent dimethyl ether (DME)/methane-air mixing layer under diesel engine-relevant conditions are studied by direct numerical simulations (DNS). Results indicate that combustion is initiated by a two-stage autoignition that involves both low-temperature and high-temperature chemistry. The first stage autoignition is initiated at the stoichiometric mixture, and then the ignition front propagates against the mixture fraction gradient into rich mixtures and eventually forms a diffusively-supported cool flame. The second stage ignition kernels are spatially distributed around the most reactive mixture fraction with a low scalar dissipation rate. Multiple triple flames are established and propagate along the stoichiometric mixture, which is proven to play an essential role in the flame developing process. The edge flames gradually get close to each other with their branches eventually connected. It is the leading lean premixed branch that initiates the steady propagating methane-air flame. The time required for the initiation of steady flame is substantially shorter than the autoignition delay time of the methane-air mixture under the same thermochemical condition. Temporal evolution of the displacement speed at the flame front is also investigated to clarify the propagation characteristics of the combustion waves. Cool flame and propagation of triple flames are also identified in this study, which are novel features of the pilot-ignited dual fuel combustion.  相似文献   

2.
Laminar premixed cool flames, induced by the coupling of low-temperature chemistry and convective-diffusive transport process, have recently attracted extensive interest in combustion and engine research. In this work, numerical simulations have been conducted using a recently developed open-source reacting flow platform reactingFOAM-SCT, to investigate the minimum ignition energy (MIE) and propagation dynamics of premixed cool flames in a 1D spherical coordinate. Results have shown that when ignition energy is below the MIE of regular hot flames, a class of cool flames could be initiated, which allow much wider flammability limits, both lean and rich, compared to hot flames. Furthermore, the overall cool flame propagation dynamics exhibit intrinsic similarity to those of hot flames, in that, they begin with an ignition kernel propagation regime, followed by two transition regimes, and eventually reach a normal flame propagation regime. However, a spherical expanding cool flame responds completely differently to stretch. Specifically, a regular outwardly propagating hot spherical flame accelerates with increasing stretch rate when the mixture Le < 1 and decelerates when Le > 1. However, it is found that a cool flame always tends to decelerate with increasing stretch rate regardless of mixture composition, exhibiting unique flame aerodynamic characteristic. This research discovers novel features of premixed cool flame initiation and propagation dynamics and sheds light on flame transition, spark-ignition system design, and advanced engine combustion control.  相似文献   

3.
Time-dependent, multidimensional simulations of unstable propagating detonations were performed using a detailed thermochemical reaction model for a stoichiometric argon-diluted hydrogen–oxygen mixture at low pressures and a hydrogen–air mixture at atmospheric pressure. Detonation cells computed for the low-pressure, dilute H2–O2–Ar systems were regular in shape, and their sizes compared reasonably well with experimental observations. The computed H2–air cells at atmospheric conditions were qualitatively different from those observed in experiments, and their widths range from less than 1 mm to nearly 5 mm with multilevel hierarchal structures. The effective activation energy of the H2–air mixture, based on constant-volume ignition delay times computed using the detailed thermochemical model, varies between 5 and 40 over the range of post-shock temperatures and pressures in the simulations and is, on average, significantly larger than expected based on the regularity of experimental cellular patterns. Analysis of the simulations suggests that vibrational relaxation of the gas molecules, a process which is ignored when calibrating detailed chemical reaction models, occurs on time scales similar to the ignition delay times for the detonations and may be a source of discrepancy between numerical and experimental results.  相似文献   

4.

Ignition and propagation of a reaction front in a counterflow system of an iso-octane/air stream mixing with an exhaust gas stream is computationally investigated to understand the fundamental characteristics of homogeneous charge compression ignition (HCCI) auto-ignition. Various mixing rates are imposed on the system and the effects of dissipation rates on auto-ignition are studied. Ignition delay and front propagation speed across the mixing layer are determined as a function of a local mixture fraction variable. The results show that mixture inhomogeneity and dissipation rate have a significant influence on ignition. Diffusive transport is found to either hamper or advance ignition depending on the initial reactivity of the mixture. Based on the relative importance of diffusion on ignition front propagation, two distinct ignition regimes are identified: the spontaneous ignition regime and the diffusion-controlled regime. The transition between these two regimes is identified using a criterion based on the ratio of the timescales of auto-ignition and diffusion. The results show that ignition in the spontaneous regime is more likely under typical HCCI operating conditions with iso-octane due to its high reactivity. The present analysis provides a means to develop an improved modelling strategy for large-scale engine simulations.  相似文献   

5.
A Burke–Schumann (flame-sheet) formulation is developed for diffusion flames between a fuel and oxidiser with Lewis numbers of unity, subject to addition to the fuel and/or oxidiser stream of a different reactant for which the Lewis number differs from unity. This formulation is applied to laminar counterflow diffusion-flame experiments, reported here, in which hydrogen was added to either methane–nitrogen mixtures or oxygen–nitrogen mixtures at normal atmospheric pressure, with both feed streams at normal room temperature. Experimental conditions were adjusted to fix selected values of the stoichiometric mixture fraction and the adiabatic flame temperature, and the strain rate was increased gradually, maintaining the momentum balance of the two streams, until extinction occurred. At the selected sets of values, the strain rate at extinction was measured as a function of the hydrogen concentration in the fuel or oxidiser stream. The ratio of the fraction of the oxidiser flux that consumes hydrogen to the fraction that consumes fuel was calculated from the new Burke–Schumann formulation, and it was found that, within experimental uncertainty, the ratio of the extinction strain rate with hydrogen addition to that without was the same at any given value of this oxygen flux ratio, irrespective of whether the hydrogen was added on the fuel or oxidiser side. This experimental result was also in close agreement with computational predictions employing detailed chemistry. These results imply that differences in detailed hydrogen concentration profiles within the reaction zone have little or no influence on the chemical kinetics of extinction when the stoichiometric mixture fraction, the adiabatic flame temperature, and the proportion of oxygen that consumes the added fuel are fixed. This same correspondence may be expected to apply for other fuels and additives.  相似文献   

6.
Combustion instability due to thermo-acoustic interactions is a critical combustion problem that requires a thorough understanding because of its adverse impact on stable and reliable operation of combustors in high-speed propulsion devices like gas turbines and rockets. This work conducts computational investigations of the coupling between the transient flame dynamics such as the ignition delay and local extinction and the thermo-acoustic instability developed in a self-excited resonance combustor to gain deep insights into the mechanisms of thermo-acoustic instability. A 2D modelling framework that employs different flamelet models (the steady flamelet model and the flamelet/progress variable approach) is developed to enable the examination of the effect of the transient flame dynamics caused by the strong coupling of the turbulent mixing and finite-rate chemical kinetics on the occurrence of thermo-acoustic instability. The models are validated by using the available experimental data for the pressure signal. Parametric studies are performed to examine the effect of the occurrence of the transient flame dynamics, the effect of artificial amplification of the Damköhler number, and the effect of neglecting mixture fraction fluctuations on the predictions of the thermo-acoustic instability. The parametric studies reveal that the occurrence of transient flame dynamics has a strong influence on the onset of the thermo-acoustic instability. Further analysis is then conducted to localise the effect of a particular flame dynamic event, the ignition delay, on the thermo-acoustic instability. The reverse effect of the occurrence of the thermo-acoustic instability on the transient flame dynamics in the combustor is also investigated by examining the temporal evolution of the local flame events in conjunction with the pressure wave propagation. The above observed two-way coupling between the transient flame dynamics (the ignition delay) and the thermo-acoustic instability provides a plausible mechanism of the self-excited and sustained thermo-acoustic instability observed in the combustor despite the fact that the results are obtained from 2D simulations. The same analysis is expected to be extensible to fully 3D simulations.  相似文献   

7.
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.  相似文献   

8.
Numerical computations and a series of experiments were conducted in microgravity to study the ignition characteristics of a thin polymethylmethacrylate (PMMA) sheet (thicknesses of 0.2 and 0.4 mm) using a CO2 laser as an external radiant source. Two separate ignition events were observed, including ignition over the irradiated surface (frontside ignition), and ignition, after some delay, over the backside surface (backside ignition). The backside ignition was achieved in two different modes. In the first mode, after the laser was turned off, the flame shrank and stabilized closer to the fuel surface. This allowed the flame to travel from the frontside to the backside through the small, open hole generated by the laser’s vaporization of PMMA. In the second mode, backside ignition was achieved during the laser irradiation. The numerical calculation simulating this second process predicts fresh oxygen supply flows from the backside gas phase to the frontside gas phase through the open hole, which mixes with accumulated hot MMA fuel vapor which is ignited as a second flame in the frontside gas phase above the hole. Then, the flame initiated from the second ignition travels through the hole to ignite the accumulated flammable mixture in the backside gas phase near the hole, attaining backside ignition. The first backside ignition mode was observed in 21% oxygen and the second backside ignition mode in 35%. The duration of the laser irradiation appears to have important effects on the onset of backside ignition. For example, in 21% oxygen, the backside ignition was attained after a 3 s laser duration but was not observed after a 6 s laser duration (within the available test time of 10 s). Longer laser duration might prevent two-sided ignition in low oxygen concentrations.  相似文献   

9.
10.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

11.
A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich–Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.  相似文献   

12.
Autoignition of non-premixed methane–air mixtures is investigated using first-order Conditional Moment Closure (CMC). Turbulent velocity and mixing fields simulations are decoupled from the CMC calculations due to low temperature changes until ignition occurs. The CMC equations are cross-stream averaged and finite differences are applied to discretize the equations. A three-step fractional method is implemented to treat separately the stiff chemical source term. Two detailed chemical kinetics mechanisms are tested as well as two mixing models. The present results show good agreement with published experimental measurements for the magnitude of both ignition delay and kernel location. The slope of the predicted ignition delay is overpredicted and possible sources of discrepancy are identified. Both scalar dissipation rate models produce comparable results due to the turbulent flow homogeneity assumption. Further, ignition always occurs at low scalar dissipation rates, much lower than the flamelet critical value of ignition. Ignition is found to take place in lean mixtures for a value of mixture fraction around 0.02. The conditional species concentrations are in qualitative agreement with previous research. Homogeneous and inhomogeneous CMC calculations are also performed in order to investigate the role of physical transport in the present autoignition study. It is found that spatial transport is small at ignition time. Predicted ignition delays are shown to be sensitive to the chemical kinetics. Reasonable agreement with previous simulations is found. Improved formulations for the mixing model based on non-homogeneous turbulence are expected to have an impact.  相似文献   

13.
This paper intensively investigated the ignition of turbulent coal flames in a novel fully-mixed tubular swirl burner. The Nikon D300s digital camera was used to capture the statistical ignition behavior of dispersed coal particle streams in different ambiences. Meanwhile, the combustion dynamics of individual coal particles were also recorded by means of high-speed photography. Two low-rank coal samples, Hulunbel lignite and Zhundong coal, were tested in this study. The ignition delay times of coal particles in the swirl burner were compared with those in a flat-flame burner. In contrast to previous work on a laminar flat-flame burner, the current experimental results show that the turbulent ambience significantly enhances the ignition of all coal samples, which is exceptionally pronounced under high temperature and low oxygen conditions. In addition, the sensitivity analysis suggests that both the enhanced heat and mass transfer contribute to the early ignition in turbulence. The effect of elevated mass transfer coefficient turns prominent in low oxygen fraction ambience, wherein the volatile barrier effect is suppressed by the enhanced mixing process. The combined effect of turbulence favors the shifting of ignition modes to the heterogeneous-dominant region. Last but not least, the ceased volatile flame that visualized in turbulent low oxygen ambience further confirms the important role of heterogeneous ignition.  相似文献   

14.
Simulations of an n-heptane spray autoigniting under conditions relevant to a diesel engine are performed using two-dimensional, first-order conditional moment closure (CMC) with full treatment of spray terms in the mixture fraction variance and CMC equations. The conditional evaporation term in the CMC equations is closed assuming interphase exchange to occur at the droplet saturation mixture fraction values only. Modeling of the unclosed terms in the mixture fraction variance equation is done accordingly. Comparison with experimental data for a range of ambient oxygen concentrations shows that the ignition delay is overpredicted. The trend of increasing ignition delay with decreasing oxygen concentration, however, is correctly captured. Good agreement is found between the computed and measured flame lift-off height for all conditions investigated. Analysis of source terms in the CMC temperature equation reveals that a convective–reactive balance sets in at the flame base, with spatial diffusion terms being important, but not as important as in lifted jet flames in cold air. Inclusion of droplet terms in the governing equations is found to affect the mixture fraction variance field in the region where evaporation is the strongest, and to slightly increase the ignition delay time due to the cooling associated with the evaporation. Both flame propagation and stabilization mechanisms, however, remain unaffected.  相似文献   

15.
The engine combustion network (ECN) Spray A is modelled using the Reynolds-averaged Navier–Stokes-transported probability density function (RANS-TPDF) approach to validate the application of a new multiple mapping conditioning (MMC) mixing model to multiphase reactive flows. The composition TPDF equations are solved using a Lagrangian stochastic approach and the spray is modelled with a discrete particle approach. The model is first validated under non-reacting conditions (at 900 K) using experimental mixture-fraction data. Reactive simulations are then performed for three different ambient temperatures (800, 900, 1100 K) and oxygen concentrations (13, 15, 21%) at an ambient density of 22.8 kg/m3. The MMC mixing model is compared with the interaction by exchange with the mean (IEM) mixing model. The ignition delay predictions are not sensitive to the mixing model and are predicted well by both the mixing models under all the tested ambient conditions. The IEM model overpredicts the flame lift-off length (FLOL) at high temperature and high oxygen conditions with a mixing constant C?=2. The MMC model with C?=2 and a target correlation coefficient rt=0.935 between the mixture fraction and a reference variable used to condition mixing predicts good FLOL under all the conditions except 800 K. It is demonstrated that the lift-off length is controllable by changing the target correlation coefficient, while C? and therefore the mixing fields are held fixed. In comparison to the MMC model, the IEM model predicts a higher variance of temperature conditioned on mixture fraction near the flame base owing to its lacking the property of localness. The mixing distance between the notional TPDF particles in the composition space is also higher with the IEM model and it is demonstrated that by changing rt, different levels of mixing locality can be achieved.  相似文献   

16.
Evaporating droplets in turbulent reacting flows   总被引:1,自引:0,他引:1  
Three-dimensional direct numerical simulations are carried out to determine the effects of turbulence on the preferential segregation of an evaporating spray and then to study the evolution of the resulting mixture fraction topology and propagating flame. First, the mixing between an initially randomly dispersed phase and the turbulent gaseous carrier phase is studied with non-evaporating particles. According to their inertia and the turbulence properties, the formation of clusters of particles is analyzed (formation delay, cluster characteristic size and density). Once the particles are in dynamical equilibrium with the surrounding turbulent flow, evaporation is considered through the analysis of the mixture fraction evolution. Finally, to mimic ignition, a kernel of burnt gases is generated at the center of the domain and the turbulent flame evolution is described.  相似文献   

17.
Fast and reliable high altitude re-ignition is a critical requirement for the development of alternative jet fuels (AJFs). To achieve stable combustion, a spark kernel needs to transit in a partially or fully extinguished flow to develop a flame front. Understanding the relight characteristics of the AJFs is complicated by the chaoticity of the turbulent flow and variations in the spark properties. The focus of this study is the prediction of such characteristics by high-fidelity simulations, with a specific focus on fuel composition effect on the ignition process. For this purpose, a previously developed computational framework is applied, which utilizes high-fidelity LES simulations, a hybrid tabulation approach for modeling forced ignition and detailed quantification of uncertainty resulting from initial and boundary conditions to predict ignition probability. The method is applied to two alternative fuels (named C1 and C5) and Jet-A fuel (named A2) under gaseous conditions. Results show that the mixing of kernel and fuel–air mixture is not affected by the ignition process, but chemistry effects strongly dominate ignition probability. In particular, C1 exhibits much lower ignition probability than the other two fuels, especially at lean operating conditions. More importantly, this behavior is contradictory to ignition delay experiments which predict longer delay times for C5 compared to C1. Comparisons with experiments show that the comprehensive modeling approach captures the ignition trends. Analysis of kernel trajectories in composition space shows that the variations are caused by the relative effects of kernel mixing, response to strain, and ignition properties of the fuel.  相似文献   

18.
Understanding and characterizing ignition of flammable mixtures by hot particles is important for assessing and reducing the risk of accidental ignition and explosion in industry and aviation. Recently, many studies have been conducted for ignition of gaseous mixtures by hot particles. However, the effects of low-temperature chemistry (LTC) on ignition by hot particles received little attention. LTC plays an important role in the ignition of most hydrocarbon fuels and may induce cool flames. The present study aims to numerically assess the effects of LTC on ignition by the hot particles. We consider the transient ignition processes induced by a hot spherical particle in quiescent and flowing stoichiometric dimethyl ether/air mixtures. 1D and 2D simulations, respectively, are conducted for the ignition process by hot-particles in quiescent and flowing mixtures. A detailed kinetic model including both LTC and high-temperature chemistry (HTC) is used in simulations. The results exhibit a premixed cool flame to be first initiated by the hot particle. Then a double-flame structure with both premixed cool and hot flames is observed at certain conditions. At zero or low inlet flow velocities, the hot flame catches up and merges with the leading cool flame. At high inlet flow velocities, the hot flame cannot be initiated due to the short residence time and large convective loss of heat and radicals. Comparing the results with and without considering LTC confirms that LTC accelerates substantially ignition via HTC in a certain range of hot particle temperatures. The mechanism of ignition promotion by LTC is interpreted by analyzing the radical pool produced by the LTC and HTC surrounding the hot particle. Moreover, the influence of inlet flow velocity on ignition by hot particles is assessed. Non-monotonic change of ignition delay time with flow velocity is observed and discussed.  相似文献   

19.
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.  相似文献   

20.
Laser-based imaging of fuel vapor distribution, ignition, and soot formation in diesel sprays was carried out in a high-pressure, high-temperature spray chamber under conditions that correspond to temperature and pressure in a diesel engine. Rayleigh scattering and laser-induced incandescence are used to image fuel density and soot volume fraction. The experimental results provide data for comparison with numerical simulations. An interactive cross-sectionally averaged spray model based on Eulerian transport equations was used for the simulation of the spray, and the turbulence-chemistry interaction was modeled with the representative interactive flamelet (RIF) concept. The flamelet calculation is coupled to the Kiva3V computational fluid dynamics (CFD) code using the scalar dissipation rate and pressure as an input to the RIF-code. The flamelet code computes the instationary flamelet profiles for every time step. These profiles were integrated over mixture fraction space using a prescribed β-PDF to obtain mean values, which are passed back to the CFD-code. Thereby, the temperature and the relevant species in each CFD-cell were obtained. The fuel distribution, the average ignition delay as well as the location of ignition are well predicted by the simulation. Furthermore, simulations show that the experimentally observed injection-to-injection variations in ignition delay are due to temperature inhomogeneities. Experimental and simulated spatial soot and fuel vapor density distributions are compared during and after second stage ignition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号