首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental evidence seems to indicate that the life of a laminar spherical flame front propagating through a fresh mixture of air and liquid fuel droplets can be roughly split into three stages: (1) ignition, (2) radial propagation with a smooth flame front and (3) propagation with flame front cellularization and/or pulsation. In this work, the second stage is analysed using the slowly varying flame approach, for a fuel rich flame. The droplets are presumed to vaporize in a sharp front ahead of the reaction front. Evolution equations for the flame and evaporation fronts are derived. For the former the combined effect of heat loss due to droplet vaporization and radiation plays a dominant explicit role. In addition, the structure of the evaporation front is deduced using asymptotics based on a large parameter associated with spray vaporization. Numerical calculations based on the analysis point to the way in which the spray modifies conditions for flame front extinction. Within the framework of the present simplified model the main relevant parameters turn out to be the initial liquid fuel load in the fresh mixture and/or the latent heat of vaporization of the fuel.  相似文献   

2.

The dynamics of thin premixed flames is computationally studied within the context of a hydrodynamic theory. A level-set method is used to track down the flame, which is treated as a free-boundary interface. The flow field is described by the incompressible Navier–Stokes equations, with different densities for the burnt and unburnt gases, supplemented by singular source terms that properly account for thermal expansion effects. The numerical scheme has been tested on several benchmark problems and was shown to be stable and accurate. In particular, the propagation of a planar flame front and the dynamics of hydrodynamically unstable flames were successfully simulated. This includes recovering the planar front in narrow domains, the Darrieus–Landau linear growth rate for long waves of small amplitude, and the nonlinear development of cusp-like structures predicted by the Michelson–Sivashinsky equation for a small density change. The stationary flame of a Bunsen burner with uniform and parabolic outlet flows were also simulated, showing in particular a careful mapping of the flow field. Finally, the evolution of a hydrodynamically unstable flame was studied for finite amplitude disturbances and realistic values of thermal expansion. These results, which constitute one of the main objectives of this study, elucidate the effect of thermal expansion on flame dynamics.  相似文献   

3.
The presence of swirl in combustion systems produces a marked change in their boundary layer flashback behaviour. Two aspects of swirling flow are investigated in this study: the effect of the swirl-generated wall-normal pressure gradient, and the effect of misalignment between the mean flow direction and the direction of flame propagation. The analysis employs Direct Numerical Simulation (DNS) of fuel-lean premixed hydrogen-air flames in turbulent planar channel flow with friction Reynolds number of 180. The effect of swirl on the flashback process is investigated by imposing a wall-normal pressure gradient profile. Analysis of the DNS data shows how the resulting differences in flow field and flame topology contribute to the differences in the overall flashback speed. Misalignment of the flow and propagation directions leads to asymmetry in the flame shape statistics as streaks of high velocity fluid in the boundary layer cleave into the flame front at an angle, yielding an increase in flame surface density away from the wall. Swirl has a stabilising effect on the turbulent flame front during flashback along the centre-body of a swirling annular flow due to the density stratification across the flame front, and produces a reduction in turbulent consumption speed. However the swirl also sets up a hydrostatic pressure difference that drives the flame forward, and the net effect is that the flashback speed is increased. The dominance of hydrostatic effects motivates development of relatively simple modelling for the effect of swirl on flashback speed. A model accounting for the inviscid momentum balance and for confinement effects is presented which adequately describes the effect of swirl on flashback speed observed in previous experimental studies.  相似文献   

4.
Diesel flame lift-off and stabilization in the presence of laser-ignition were numerically investigated with the method of Eulerian stochastic fields. The aim was to scrutinise the interaction between the lifted diesel flame and an ignition kernel upstream of the lifted flame. The numerical simulation was carried out in a constant-volume combustion vessel with n-heptane as fuel. The process was studied previously in an experiment employing Diesel #2 as the fuel in the same combustion vessel. In the experiment a lifted flame was first established at a position downstream of the nozzle. An ignition kernel was then initiated using a high-energy pulse laser at a position upstream of the natural lift-off position of the diesel flame. The laser-ignition kernel was modelled using a high-temperature (~2000 K) hot spot. In both experiment and simulations the upstream front of the ignition kernel was shown to remain around the initial laser ignition site for a substantially long period of time, while the downstream front of the ignition kernel propagates rapidly towards the natural lift-off position downstream of the laser ignition site. The lift-off position oscillated before the final stabilization at the natural lift-off position. The structures and the propagation speed of the reaction fronts in the laser-ignition kernel and the main flame were analysed. Two different stabilization mechanisms, the auto-ignition mechanism and the flame propagation mechanism, were identified for the naturally lifted flame and the laser-induced reaction front, respectively. A mechanism was proposed to explain the oscillation of the lift-off position.  相似文献   

5.
Laminar burning velocities are of great importance in many combustion models as well as for validation and improvement of chemical kinetic schemes. Determining laminar burning velocities with high accuracy is quite challenging and different approaches exist. Hence, a comparison of existing methods measuring and evaluating laminar burning velocities is of interest. Here, two optical diagnostics, high speed tomography and Schlieren cinematography, are simultaneously set up to investigate methods for evaluating laminar flame speed in a spherical flame configuration. The hypothesis to obtain the same flame propagation radii over time with the two different techniques is addressed. Another important aspect is the estimation of flame properties, such as the unstretched flame propagation speed and Markstein length in the burnt gas phase and if these are estimated satisfactorily by common experimental approaches. Thorough evaluation of the data with several extrapolation techniques is undertaken. A systematic extrapolation approach is presented to give more confidence into results generated experimentally. The significance of the linear extrapolation routine is highlighted in this context. Measurements of spherically expanding flames are carried out in two high-pressure, high-temperature, constant-volume vessels at RWTH in Aachen, Germany and at ICARE in Orleans, France. For the discussion of the systematic extrapolation approach, flame speed measurements of methane / air mixtures with mixture Lewis numbers moderately away from unity are used. Conditions were varied from lean to rich mixtures, at temperatures of 298–373 K, and pressures of 1 atm and 5 bar.  相似文献   

6.
7.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

8.
In this study, the influence of the negative velocity field formed ahead of an abruptly deformed flame tip on the propagation behaviour of a laminar premixed flame is numerically investigated. A strong deformation in the flame front is induced by imposing a very narrow, in-line pre-heating zone in the unburned region. The simulation is performed under low Mach number approximation by using a multi-scale multi-physics Computational Fluid Dynamics (CFD) solver FrontFlow/Red with one-step finite rate chemistry in order to track the time-dependent flame dynamics. The computed results unveil that the flame front is deformed significantly within a short time due to the narrow in-line pre-heating effect. The flame deformation induces a strong negative velocity field ahead of the deformed flame tip, acting in the direction of propagation, which gives rise to a strong pair vortex. This strong pair vortex interacts with the flame tip and then slides down along the flame surface in the upstream direction during propagation. This flame-vortex interaction causes further deformation in the flame surface in the upstream direction, and consequently, the flame exhibits a wave-like surface, which enhances the flame propagation speed. The auto-generation of a strong pair vortex ahead of the flame front due to the localised thermal input could be applied as one of the methods to control the combustion externally. It is also expected that the results obtained in this study could have a significant impact on the detailed understanding of the local thermo-fluid dynamical interaction process of turbulent combustion in practical combustors.  相似文献   

9.
The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.   相似文献   

10.
The localised forced ignition and the early stages of the subsequent flame propagation in a planar turbulent methane/air jet in ambient air have been simulated using Direct Numerical Simulation (DNS) and a two-step chemical mechanism. Sixteen identical energy depositions events were simulated for four independent flow realisations at four different locations. The successful ignition and subsequent flame propagation have been found to be well correlated to the mean mixture fraction and flammability factor values of the energy deposition location. Furthermore, similarly to what has been observed in experiments, the early stages of flame development from the ignition kernel involved initial downstream convection of the kernel, followed by simultaneous radial expansion and downstream propagation and finally the upstream propagation of the flame base indicating the onset of flame stabilisation. The mixture composition and the scalar dissipation rate (SDR) values in the immediate vicinity of the ignitor have been identified to play key roles in determining the outcome of the external energy deposition, while the development of an edge flame structure propagating along the stoichiometric mixture fraction iso-surface was found to be necessary but not sufficient for the flame to propagate upstream. It has also been found that in the case of successful self-sustained burning, the edge flame was developing in low SDR regions, and that the most probable edge flame speed remains close to the theoretical laminar value irrespective of the flame development history. Finally, the mean flame speed of the edge flame elements propagating towards the nozzle exit has been found to be considerably greater than the unstrained laminar burning velocity. Thus, the edge flame, depending on its orientation with respect to the flow, is able to propagate upstream and initiate the onset of flame stabilisation.  相似文献   

11.
The flow induced in a layer of liquid fuel at sub-flash temperature by the thermocapillary forces associated with the spreading of a flame that heats and vaporizes the liquid is analysed numerically and asymptotically, for large values of the Marangoni number and of the Reynolds number based on the propagation speed. Upstream heat convection in a recirculating region moving with the flame front is described for a steady model problem and for uniform and pulsating flame spread. A possible mechanism triggering flow oscillations entirely dependent on the liquid phase is identified and discussed.  相似文献   

12.
The structure and dynamics of a turbulent partially premixed methane/air flame in a conical burner were investigated using laser diagnostics and large-eddy simulations (LES). The flame structure inside the cone was characterized in detail using LES based on a two-scalar flamelet model, with the mixture fraction for the mixing field and level-set G-function for the partially premixed flame front propagation. In addition, planar laser induced florescence (PLIF) of CH and chemiluminescence imaging with high speed video were performed through a glass cone. CH and CH2O PLIF were also used to examine the flame structures above the cone. It is shown that in the entire flame the CH layer remains very thin, whereas the CH2O layer is rather thick. The flame is stabilized inside the cone a short distance above the nozzle. The stabilization of the flame can be simulated by the triple-flame model but not the flamelet-quenching model. The results show that flame stabilization in the cone is a result of premixed flame front propagation and flow reversal near the wall of the cone which is deemed to be dependent on the cone angle. Flamelet based LES is shown to capture the measured CH structures whereas the predicted CH2O structure is somewhat thinner than the experiments.  相似文献   

13.
Resolving fluid transport at engine surfaces is required to predict transient heat loss, which is becoming increasingly important for the development of high-efficiency internal combustion engines (ICE). The limited number of available investigations have focused on non-reacting flows near engine surfaces, while this work focuses on the near-wall flow-field dynamics in response to a propagating flame front. Flow-field and flame distributions were measured simultaneously at kHz repetition rates using particle tracking velocimetry (PTV) and planar laser induced fluorescence (PLIF) of sulfur dioxide (SO2). Measurements were performed near the piston surface of an optically accessible engine operating at 800?rpm with homogeneous, stoichiometric isooctane-air mixtures. High-speed measurements reveal a strong interdependency between near-wall flow and flame development which also influences subsequent combustion. A conditional analysis is performed to analyze flame/flow dynamics at the piston surface for cycles with ‘weak’ and ‘strong’ flow velocities parallel to the surface. Faster flame propagation associated with higher velocities before ignition demonstrates a stronger flow acceleration ahead of the flame. Flow acceleration associated with an advancing flame front is a transient feature that strongly influences boundary layer development. The distance from the wall to 75% maximum velocity (δ75) is analyzed to compare boundary layer development between fired and motored datasets. Decreases in δ75 are strongly related to flow acceleration produced by an approaching flame front. Measurements reveal strong deviations of the boundary layer flow between fired and motored datasets, emphasizing the need to consider transient flow behavior when modeling boundary layer physics for reacting flows.  相似文献   

14.
Violent folding of a flame front in a flame-acoustic resonance   总被引:1,自引:0,他引:1  
The first direct numerical simulations of violent flame folding because of the flame-acoustic resonance are performed. Flame propagates in a tube from an open end to a closed one. Acoustic amplitude becomes extremely large when the acoustic mode between the flame and the closed tube end comes in resonance with intrinsic flame oscillations. The acoustic oscillations produce an effective acceleration field at the flame front leading to a strong Rayleigh-Taylor instability during every second half period of the oscillations. The Rayleigh-Taylor instability makes the flame front strongly corrugated with elongated jets of heavy fuel mixture penetrating the burnt gas and even with pockets of unburned matter separated from the flame front.  相似文献   

15.
This study investigates the influence of large-scale flow features, including flow structure and velocity magnitude, on the early-burn period variability in a homogenous-charge spark-ignited engine fueled with premixed propane-air mixture. Particle image velocimetry and in-cylinder pressure measurement data from a previous study - were processed to enable simultaneous flow characterization and flame-front tracking as well as apparent heat-release analysis. By combining probability analysis of flame development with conditional sampling of fast and slow early-burn cycles using 10% fuel mass fraction burned, it is shown that an undesirable flow structure produces an asymmetric flame development at the initial flame growth period. This asymmetric flame structure persists through the whole initial-to-turbulent transition period until the flame becomes fully turbulent. The undesirable flow condition is characterized by large-scale convective flows near spark plug rather than flows that lead to increased flame spread in multiple directions. The simultaneous flow and flame characterization enables the quantifications of flame-front propagation speed, unburned fuel-air mixture velocity ahead of flame front and local burning velocity at flame surface. Here the local burning velocity is referred to as laminar or turbulent flame speed. A simplified approach is introduced to derive integrated values for these quantities per crank-angle-degree, enabling the quantitative comparison of the trend-wise difference in these integrated metrics between fast and slow early-burn cycles. It is revealed that for the transition period, the CCV in the velocity magnitude of unburned fuel-air mixture ahead of the flame front accounts for nearly 50% to the variability of flame propagation speed. The burning velocity provides the remaining source of the flame propagation variability in this period. The flame propagation variations in the initial flame growth and fully turbulent periods are smaller than those in the transition period and are primarily dependent on the variability of large-scale flow features.  相似文献   

16.
A two-dimensional triple-flame numerical model of a laminar combustion process reflects flame asymmetric structural features that other analytical models do not generate. It reveals the pentasectional character of the triple flame, composed of the central pure diffusion-flame branch and the fuel-rich and fuel-lean branches, each of which is divided into two sections: a near-stoichiometric section and a previously unreported near-flammability-limits section with combined diffusion and premixed character. Results include propagation velocity, fuel and oxidiser mass fractions, temperature and reaction rates. Realistic stoichiometric ratios and reaction orders match experimental planar flame characteristics. Constant density, a one-step reaction, and a mixture fraction gradient at the inlet as the simulation parameter are imposed. The upstream equivalence ratio or the upstream reactant mass fractions are linear or hyperbolic functions of the transverse coordinate. The use here of experimental kinetics data differs from previous analytical works and results in flame asymmetry and different flammability limits. Upstream mixture composition gradient affects propagation velocity, flame curvature, diffusion flame reaction rate, and flammability limits. Flammability limits extend beyond those of a planar flame due to transverse heat and mass diffusion causing the pentasectional character.  相似文献   

17.
朱跃进  董刚 《计算物理》2015,32(4):403-409
为深入研究激波冲击火焰现象的内在机制,采用二维带化学反应的Navier-Stokes方程对现象进行数值研究,通过对速度梯度张量特征方程的分析证明Okubo-Weiss函数适用于可压缩流动,并重点分析火焰区的流动拓扑特性.结果表明,波后火焰区内Okubo-Weiss函数积分量基本守恒,但在火焰区内部和表面具有截然不同的流动状态,且火焰发展基本不受流场可压缩性的影响;波后火焰区的流动拓扑分类主要以焦点和鞍点为主,意味着流场中变形占主导.  相似文献   

18.
The ignition process, mode of combustion and reaction front propagation in a partially premixed combustion (PPC) engine running with a primary reference fuel (87% iso-octane, 13% n-heptane by volume) is studied numerically in a large eddy simulation. Different combustion modes, ignition front propagation, premixed flame and non-premixed flame, are observed simultaneously. Displacement speed of CO iso-surface propagation describes the transition of premixed auto-ignition to non-premixed flame. High temporal resolution optical data of CH2O and chemiluminescence are compared with simulated results. A high speed ignition front is seen to expand through fuel-rich mixture and stabilize around stoichiometry in a non-premixed flame while lean premixed combustion occurs in the spray wake at a much slower pace. A good qualitative agreement of the distribution of chemiluminescence and CH2O formation and destruction shows that the simulation approach sufficiently captures the driving physics of mixed-mode combustion in PPC engines. The study shows that the transition from auto-ignition to flame occurs over a period of several crank angles and the reaction front propagation can be captured using the described model.  相似文献   

19.
Spark ignition, as the first step during the combustion in Otto engines, has a profound impact on the further development of the flame kernel. Over the last ten years growing concern for environment protection, including low emission of pollutants has increased the interest in the numerical simulation of ignition phenomena to guarantee successful flame kernel development even for lean mixtures.

However, the process of spark ignition in a combustible mixture is not yet fully understood. The use of detailed reaction mechanisms, combined with electrodynamical modelling of the spark, is necessary to optimize ignition of lean mixtures.

This work presents simulations of the coupling of flow, chemical reactions and transport with discharge processes in order to investigate the development of a stable flame kernel initiated by an electrical spark. A two-dimensional code to simulate the early stages of flame kernel formation, shortly after the breakdown discharge, has been developed. The model includes Joule heating. The spark plasma channel formed as a consequence of the breakdown is incorporated into the initial conditions. The computations include the initial phase (1–5 µs), which is governed by pressure wave formation, but also the transition to flame propagation. A thorough study of the influence of the electrodes' geometry, i.e. shape and size, and gap width, has been performed for air and a lean H2–air mixture. Also a detailed methane-air mechanism was chosen as another example including combustion.

Due to the fast expansion of the plasma channel, together with the geometrical complexity of the electrodes, a complicated flow field develops after the emission of a pressure wave by the expanding channel. Special numerical methods, including artificial viscosity, are required to resolve the complicated flow field during these first 1–5 µs. The heat release through chemical reactions and transport processes is almost negligible during this short phase. The second phase, i.e. the development of a propagating flame and the flame kernel expansion, can last up to several milliseconds and is dominated by diffusive processes and chemical reactions. It has been found that the geometry greatly influences the developing flame kernel and the flow field. As soon as chemical reactions begin to contribute significantly to the heat release, the effect becomes smaller.  相似文献   

20.
We consider the propagation of a combustion front resulting from the gasless combustion of a condensed state fuel. The propagation of the front, essentially a premixed laminar flame, is supported by an exothermic reaction subject to possible heat loss through a competitive endothermic reaction. The dynamics of the endothermic process inducing the heat loss strongly depend on the temperature and the local fuel concentration. Through an analysis based on high activation energy, the steady-state values of the final burnt temperature as well as the burning velocity are obtained, and the control parameters are identified. Using a linear perturbation method, we assess the stability of the propagating front and obtain a condition for oscillatory behaviour. The critical parameter values for the transition from steady to oscillatory burning speeds are identified. The results represent a generalization of those obtained by Matkowsky and Sivashinsky to include the effects of heat loss induced by a competitive endothermic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号