首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-NOx NH3-air combustion power generation technology was developed by using a 50-kWe class micro gas-turbine system at the National Institute of Advanced Industrial Science and Technology (AIST), Japan, for the first time. Based on the global demand for carbon-free power generation as well as recent advances involving gas-turbine technologies, such as heat-regenerative cycles, rapid fuel mixing using strong swirling flows, and two-stage combustion with equivalence ratio control, we developed a low-NOx NH3-air non-premixed combustor for the gas-turbine system. Considering a previously performed numerical analysis, which proved that the NO reduction level depends on the equivalence ratio of the primary combustion zone in a NH3-air swirl burner, an experimental study using a combustor test rig was carried out. Results showed that eliminating air flow through primary dilution holes moves the point of the lowest NO emissions to the lesser fuel flow rate. Based on findings derived by using a test rig, a rich-lean low NOx combustor was newly manufactured for actual gas-turbine operations. As a result, the NH3 single fueled low-NOx combustion gas-turbine power generation using the rich-lean combustion concept succeeded over a wide range of power and rotational speeds, i.e., below 10–40 kWe and 75,000–80,000?rpm, respectively. The NO emissions were reduced to 337?ppm (16% O2), which was about one-third of that of the base system. Simultaneously, unburnt NH3 was reduced significantly, especially at the low electrical power output, which was indicative of the wider operating range with high combustion efficiency. In addition, N2O emissions, which have a large Global Warming Potential (GWP) of 298, were reduced significantly, thus demonstrating the potential of NH3 gas-turbine power generation with low environmental impacts.  相似文献   

2.
针对新一代高油气比(0.051及以上)航空发动机燃烧室,本文提出头部采用化学恰当比直接混合燃烧设计方案.对于新一代高压比(70及以上)低排放民用航空发动机燃烧室,由于其自着火延迟时间极短,因此采用贫油直接混合燃烧,而不能采用预混合预蒸发燃烧.本文提出了一种贫油直接混合低排放燃烧室方案,其燃油空气模由简单的压力雾化喷嘴和...  相似文献   

3.
Ammonia has widely attracted interest as a potential candidate not only as a hydrogen energy carrier but also as a carbon free fuel for internal combustion engines, such as gas turbines. Because ammonia contains a nitrogen atom in its molecule, nitrogen oxides (NOx) and other pollutants may be formed when it burns. Therefore, understanding the fundamental product gas characteristics of ammonia/air laminar flames is important for the design of ammonia-fueled combustors to meet stringent emission regulations. In this study, the product gas characteristics of ammonia/air premixed laminar flames for various equivalence ratios were experimentally and numerically investigated up to elevated pressure conditions. In the experiments, a stagnation flame configuration was employed because an ammonia flame can be stabilized by using such a configuration without a pilot flame. The experimental results showed that the maximum NO mole fraction was about 3,500 ppmv, at an equivalence ratio of 0.9 at 0.1 MPa. The NO mole fraction decreased as the equivalence ratio increased. In addition, the maximum value of the NO mole fraction decreased with an increase in mixture pressure. Furthermore, it was experimentally clarified that the simultaneous reduction of NO and unburnt ammonia can be achieved at an equivalence ratio of about 1.06, which is the target equivalence ratio for emission control in rich-lean two-stage ammonia combustors. Comparison of experimental and numerical results showed that even though the reaction mechanisms employed have been optimized for predicting the laminar burning velocity of ammonia/air flames, they failed to satisfactorily predict the measured species in this study. Sensitivity analysis was used to identify elementary reactions that control the species profiles but have negligible effects on the burning velocity. It is considered that these reaction models need to be updated for accurate prediction of product gas characteristics of ammonia/air flames.  相似文献   

4.
本文介绍了在压燃式发动机上进行的预混合燃烧研究。在柴油机的进气道入口处安装了一个电控燃料喷射系统,喷入具有低十六烷值、低沸点的甲缩醛(DMM)燃料,在压缩冲程中形成均匀的混合气,并在上止点附近喷入少量柴油来点燃混合气。本文研究了预混合燃料比、发动机负荷、进气中CO2浓度和喷孔直径对发动机燃烧和排放的影响。试验结果表明,进气道喷射DMM的预混合燃烧能同时大幅降低NOx和碳烟排放,为降低柴油机有害排放提供了一种新途径。  相似文献   

5.
燃油分级多点喷射低污染燃烧室的化学反应网络模型分析   总被引:4,自引:0,他引:4  
本文采用基于详细化学反应机理的化学反应网络模型分析了航空发动机燃油径向分级多点喷射低污染燃烧室的NO_x排放特性。该分级燃烧室不同于传统燃烧室,头部由值班区和主燃区两个不同的燃烧区域,根据CFD得到的流场特性和当量比的分布特性对燃烧室进行分区构建化学反应器网络模型,研究了值班级当量比以及值班级和主燃级两级供油比例对排放的影响。同时,还分析了空气进口温度对NO_x排放的影响。得到了较为合理的变化趋势,为低污染燃烧室的初步设计提供了有益的指导。  相似文献   

6.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

7.
Utilizing ammonia as a co-firing fuel to replace amounts of fossil fuel seems a feasible solution to reduce carbon emissions in existing pulverized coal-fired power plants. However, there are some problems needed to be considered when treating ammonia as a fuel, such as low flame stability, low combustion efficiency, and high NOx emission. In this study, the co-firing characteristics of ammonia with pulverized coal are studied in a drop tube furnace with staged combustion strategy. Results showed that staged combustion would play a key role in reducing NOx emissions by reducing the production of char-NOx and fuel(NH3)-NOx simultaneously. Furthermore, the effects of different ammonia co-firing methods on the flue gas properties and unburned carbon contents were compared to achieve both efficient combustion and low NOx emission. It was found that when ammonia was injected into 300 mm downstream under the condition of 20% co-firing, lower NOx emission and unburnt carbon content than those of pure coal combustion can be achieved. This is probably caused by a combined effect of a high local equivalence ratio of NH3/air and the prominent denitration effect of NH3 in the vicinity of the NH3 downstream injection location. In addition, NOx emissions can be kept at approximately the same level as coal combustion when the co-firing ratio is below 30%. And the influence of reaction temperature on NOx emissions is closely associated with the denitration efficiency of the NH3. Almost no ammonia slip has been detected for any injection methods and co-firing ratio in the studied conditions. Thus, it can be confirmed that ammonia can be used as an alternative fuel to realize CO2 reduction without extensive retrofitting works. And the NOx emission can be reduced by producing a locally NH3 flame zone with a high equivalence ratio as well as ensuring adequate residence time.  相似文献   

8.
One of the main concerns regarding ammonia combustion is its tendency to yield high nitric oxide (NO) emissions. Burning ammonia under slightly rich conditions reduces the NO mole fraction to a low level, but the penalties are poor combustion efficiency and unburnt ammonia. As an alternative solution, this paper reports the experimental investigation of premixed swirl flames fueled with ammonia-hydrogen mixtures under very-lean to stoichiometric conditions. A gas analyzer was used to measure the NO mole fraction in the flame and post flame regions, and it was found that low NO emissions (as low as 100 ppm) in the exhaust were achieved under very lean conditions (? ≈ 0.40). Low NO emission was also possible at higher equivalence ratios, e.g. ? = 0.65, for very large ammonia fuel fractions (XNH3 > 0.90). 1-D flame simulations were performed to elaborate on experimental findings and clarify the observations of the chemical kinetics. In addition, images of OH* chemiluminescence intensity were captured to identify the flame structure. It was found that, for some conditions, the OH* chemiluminescence intensity can be used as a proxy for the NO mole fraction. A monotonic relationship was discovered between OH* chemiluminescence intensities and NO mole fraction for a wide range of ammonia-hydrogen blends (0.40 < ? < 0.90 and 0.25 < XNH3 < 0.90), making it possible to use the low-cost OH* chemiluminescence technique to qualify NO emission of flames fueled with hydrogen-enriched ammonia blends.  相似文献   

9.
The influence of wall heat loss on the emission characteristics of ammonia-air swirling flames has been investigated employing Planar Laser-Induced Fluorescence imaging of OH radicals and Fourier Transform Infrared spectrometry of the exhaust gases in combustors with insulated and uninsulated walls over a range of equivalence ratios, ?, and pressures up to 0.5 MPa. Strong influence of wall heat loss on the flames led to quenching of the flame front near the combustor wall at 0.1 MPa, resulting in large unburned NH3 emissions, and inhibited the stabilization of flames in the outer recirculating zone (ORZ). A decrease in heat loss effects with an increase in pressure promoted extension of the fuel-rich stabilization limit owing to increased recirculation of H2 from NH3 decomposition in the ORZ. The influence of wall heat loss resulted in emission trends that contradict already reported trends in literature. NO emissions were found to be substantially low while unburned NH3 and N2O emissions were high at fuel-lean conditions during single-stage combustion, with values such as 55 ppmv of NO, 580 ppmv of N2O and 4457 ppmv of NH3 at ? = 0.8. In addition, the response of the flame to wall heat loss as pressure increased was more important than the effects of pressure on fuel-NO emission, thereby leading to an increase in NO emission with pressure. It was found that a reduction in wall heat loss or a sufficiently long fluid residence time in the primary combustion zone is necessary for efficient control of NH3 and N2O emissions in two-stage rich-lean ammonia combustors, the latter being more effective for N2O in addition to NO control. This study demonstrates that the influence of wall heat loss should not be ignored in emissions measurements in NH3-air combustion, and also advances the understanding of previous studies on ammonia micro gas turbines.  相似文献   

10.
Soot and NO emissions are considered as major pollutants to the atmosphere from compression ignition engines. Researchers have been dedicated to the reduction of soot and NO emissions. Thus, an advance combustion regime, i.e. reactivity controlled compression ignition (RCCI), was proposed to mitigate the formation of these emissions. In this study, the dynamic ?-T (equivalence ratio vs. temperature) map analysis was applied to visualise the combustion processes associated with the in-cylinder temperature and equivalence ratio in an RCCI engine. Therefore, the soot and NO emissions can be efficiently reduced by controlling the combustion process out of the emissions islands on the ?-T map. This analysis method employs KIVA4-CHEMKIN and SENKIN code to construct ?-T maps under various conditions. To find out the significant parameters of controlling combustion process and emissions formation, four parameters were taken into consideration in a natural gas (NG) and diesel fuelled RCCI engine: NG percentage, the first start of injection (SOI) timing, split fraction of diesel and exhaust gas recirculation (EGR) rate. Each parameter was varied at three levels. Finally, the ?-T maps and final soot and NO emissions were compared among varied conditions for each parameter. It is found that the increased NG percentage can significantly reduce soot because of the absence of C-C bond in NG and the reduced diesel fuel impingement on the surface of the piston or cylinder wall. Increasing EGR can decrease the peak combustion temperature due to the dilution effect and thermal effect, consequently maintaining RCCI at low temperature combustion region. This study also indicates that dynamic ?-T map analysis is efficient at manipulating the combustion process to mitigate the soot and NO emissions formation.  相似文献   

11.
燃气轮机合成气燃烧室燃料气加湿实验研究   总被引:3,自引:0,他引:3  
本文针对一种燃用合成气的40MW级燃气轮机燃烧室,进行了该型燃烧室的全压燃料气蒸汽加湿试验研究,得到了燃烧室在基本负荷下随加湿量变化污染物排放、燃烧室内动态压力、火焰筒壁面温度等重要参数的变化规律,分析了燃料气加湿对燃气轮机总体性能、污染物排放、火焰筒壁温及燃烧稳定性方面的影响,探讨了燃料气加湿对合成气燃烧中Nox生成的机理性作用. 研究表明燃料气加湿是降低燃用合成气的燃气轮机氮氧化物排放的有效方式.  相似文献   

12.
Control of oscillating combustion and noise based on local flame structure   总被引:2,自引:0,他引:2  
To control combustion oscillations, the characteristics of an oscillating swirl injection premixed flame have been investigated, and control of oscillating combustion and noise based on local flame structure has been conducted. The r.m.s. value of pressure fluctuations and noise level show significantly large values between = 0.8 and 1.1. The beating of pressure fluctuations is observed for the large oscillating flame conditions in this combustor. Relationship between beating of pressure fluctuations and local flame structure was observed by the simultaneous measurement of CH/OH planar laser induced fluorescence and pressure fluctuations. The local flame structure and beating of pressure fluctuations are related and the most complicated flame is formed in the middle pressure fluctuating region of beating. The beating of pressure fluctuations, which plays important roles in noise generation and nitric oxide emission in this combustor, could be controlled by injecting secondary fuel into the recirculating region of oscillating flames. Injecting secondary fuel prevented lean blowout, and low NOx combustion was also achieved even for the case of pure methane injection as a secondary fuel. By injecting secondary fuel into the recirculating region near the swirl injector, the flame lifted from the swirl injector and its reaction region became uniform and widespread, hence resulting in low nitric oxide emission. Secondary mixture injection, fuel diluted with air, is not effective for control of combustion oscillations suppression and lean blowout prevention.  相似文献   

13.
In this study, a bespoke single-stage swirl burner was used to experimentally investigate the effects of residence time on emissions from premixed ammonia-methane-air flames. The residence time was altered in two ways: by modifying the combustion chamber's length or by modifying the swirl number. Exhaust emissions of O2, CO2, CO, NO, NO2, and N2O were measured at an absolute pressure of 2 bar for equivalence ratios between 0.50 and 0.95 and ammonia fractions in the fuel blend between 0 and 100%. Spatial distributions of NO and OH radicals were also imaged using PLIF inside the combustion chamber at different heights above the nozzle. Data shows that increasing residence time can further advance chemical reactions, as evidenced by a reduction in O2 concentration in the exhaust. Increasing the swirl number reduces emissions of NO, NO2, and N2O more efficiently than tripling the chamber's length. However, a decrease in the combustion efficiency may be responsible for a fraction of this NOx reduction when the swirl number is increased for some equivalence ratios. NO emissions are not modified when the chamber's length is increased, which is consistent with the fact that the NO-LIF signal does not decay when the distance from the nozzle increases. Therefore, NO formation is somehow restricted to within the main reaction zone of the swirling flame, that is, the zone whose height does not exceed 60 mm for this burner. Conversely, tripling the chamber's length reduces the concentrations of NO2 and N2O. This reduction is not reflected in a measurable increase in NO concentration because NO is present in much larger quantities than NO2 and N2O in flames examined here. Consistent with the fact that OH promotes NO formation via fuel-NOx pathways, a positive correlation is found between NO- and OH-LIF intensities.  相似文献   

14.
高温空气燃烧NOx排放特性的试验研究   总被引:2,自引:0,他引:2  
通过两种结构烧嘴的热态燃烧试验对比,研究了烧嘴结构、燃气射流速度、过量空气系数对高温空气燃烧过程氮氧化物排放的影响特性。研究结果认为:在燃气喷口两侧布置两个矩形空气喷口的烧嘴,氮氧化物排放量低于圆形空气喷口烧嘴;随着燃气射流速度的提高,高温空气燃烧过程排放的氮氧化物逐渐减少。与普通燃烧过程不同的是,随着过量空气系数的提高,在一定范围内高温空气燃烧的氮氧化物排放量不断增加。分析认为,高温空气燃烧氮氧化物排放量与火焰体积、炉内氧气与燃气混合过程以及燃气射流和空气射流对炉内烟气的卷吸量有关。  相似文献   

15.
Fuel reforming technology using a low temperature oxidation reaction was applied to improvement of NOx reduction efficiency of hydrocarbons selective catalytic reduction (HC-SCR) system, which does not require urea. The low temperature oxidation reaction of hydrocarbons produces oxygenated hydrocarbons which has high NOx reduction ability such as aldehydes. A pre-evaporation and premixing-type fuel reformer was developed in order to generate uniform fuel/air premixed gas. To prevent from hot-flame ignition, the reaction chamber of the fuel reformer has a high surface/volume ratio and the wall temperature of the reaction chamber was controlled. As a fundamental study, NOx reduction experiments and elementary reaction calculation were carried out to investigate the suitable fuel reformer temperature and reforming equivalence ratio for the promotion of NOx reduction on the surface of the catalyst. It was found that the reforming fuel gas has a higher NOx reduction efficiency than the fuel vapor in the catalyst temperature range from 473 to 773 K. The NOx reduction efficiency was highest at the reforming temperature of 673 K. The NOx reduction efficiency at the catalyst temperature of 723 K increases with the increase in the reforming equivalence ratio. It was suggested that alcohols predominantly affect NOx reduction reaction at low catalyst temperatures, and aldehydes at high catalyst temperatures.  相似文献   

16.
燃气轮机的燃烧噪声是反映燃烧室燃烧稳定性的主要参数.本文对国内某座煤基IGCC示范电站的40 MW级燃气轮机在诸多运行条件下的燃烧噪声进行了现场测试,分析了气液双燃料喷嘴在燃烧轻柴油、燃烧合成气以及油气切换过程中燃烧室的燃烧噪声,另外分析了合成气掺烧驰放气与合成气加湿对燃烧稳定性的影响.结果表明:合成气燃烧室在油气切换过程中燃烧噪声会增加,但距离振荡燃烧的阈值仍有很大的裕度;烧合成气时随着燃气轮机功率增加燃烧噪声降低;合成气加湿时随着蒸汽流量增加污染物NOx排放显著降低,并且燃烧噪声也有降低的趋势.  相似文献   

17.
进气中CO2浓度对预混合燃烧和排放影响的试验和模拟研究   总被引:4,自引:0,他引:4  
本文研究了进气中CO2浓度对燃烧和排放特性的影响.研究表明在所有的预混合燃料比下,当CO2浓度增加时,NOx排放随之大幅减少,烟度排放有小的变化。利用KIVA3V和湍流与化学反应交互的燃烧模型对柴油机预混合燃烧进行了模拟研究,对缸内OH浓度的模拟计算表明,随着CO2浓度的增加,着火前期OH生成浓度明显向后推移,这表明燃料的氧化速率随CO2浓度的增加变慢,从而延长了着火滞燃期。进气中CO2浓度变大时,燃烧温度降低,有利于降低NOx的排放。  相似文献   

18.
Compared to hydrocarbons, ammonia's low reactivity and higher NOx emissions limit its practical application. Consequently, its implementation in combustion systems requires a different combustor geometry, by adapting existing systems or developing new ones. This study investigates the flame stability, NO emissions, and flame structure of NH3/CH4/air premixed flames in a novel combustor comprising a double swirl burner. A lean premixed CH4/air mixture of equivalence ratio, Φout, was supplied to the outer swirl, while a NH3/CH4/Air mixture fed the inner swirl. The molar fraction of NH3 in the inner fuel blend, xNH3, was varied from 0 (pure CH4) to 1 (pure NH3) over far-lean to far-rich inner stream equivalence ratio, Φin. This new burner's stability map was established in terms of Φin versus xNH3 for different Φout. Then, NO emissions were measured versus Φin for various xNH3 and Φout. Finally, based on the NO emissions, eight flames were down-selected for in-flame measurements, which included temperature and OH-PLIF. The stability measurements revealed that increasing xNH3 modifies the stability map by increasing the lean blowout limits and narrowing the flashback region. At Φout ≥ 0.6, a stable flame was achieved for a pure inner NH3/air mixture. Low NO emissions were achieved in this burner configuration at xNH3=1 by either enriching or far-leaning Φin. Enriching Φin led to a steep decrease in NO concentrations. However, to achieve low NO concentrations, precise control of Φout was needed. At Φin=1.4, 220 ppm NO at Φout=0.7 versus 690 at Φout=0.6 was measured. Moreover, substantially enriching Φin>1.2 led to a slight decrease in measured NO. Generally, the OH-PLIF images revealed a conical OH-layer at the burner exit. Certain flame conditions created OH-pockets inside the conical structure or formed a V-shaped OH-layer far downstream. This change in flame structure was found to impact NO emissions strongly.  相似文献   

19.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

20.
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号