首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

2.
在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究了燃料敏感性(S)为0和6时对发动机缸内火焰发展和燃烧发光光谱的影响。试验过程中,通过改变喷油时刻(SOI=-25,-15和-5°CA ATDC)使燃烧模式从部分预混燃烧过渡到传统柴油燃烧模式。通过使用正庚烷、异辛烷、乙醇混合燃料来改变燃料敏感性。结果表明,在PPC模式下(-25°CA ATDC),火焰发展过程是从近壁面区域开始着火,而后向燃烧室中心发展,即存在类似火焰传播过程,同时在燃烧室下部未燃区域也形成新的着火自燃点。敏感性对燃烧相位影响较大,对缸内燃烧火焰发展历程影响较小;高敏感性燃料OH和CH带状光谱出现的时刻推迟,表明高敏感性燃料高温反应过程推迟,且光谱强度更低,表明碳烟辐射强度减弱。在PPC到CDC之间的过渡区域(-15°CA ATDC),燃烧火焰发光更亮,燃烧反应速率比-25°CA ATDC时刻的反应速率更快。高、低敏感性燃料对缸压放热率的影响规律与-25°CA ATDC相近,此时的燃烧反应更剧烈,放热率更高,碳烟出现时刻更早。该喷油时刻下的光谱强度高于PPC模式下的光谱强度,说明此时的CO氧化反应与碳烟辐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号