首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.  相似文献   

2.
We have carried out a comparative study of matrix carbonization of some organic precursors (sucrose, polydivinylbenzene, polyphenol-formaldehyde, polyacrylonitrile, acetonitrile) in SBA-15 and KIT-6 silica mesoporous molecular sieves. We have shown that carbon mesoporous molecular sieves of the CMK-8 type, obtained in KIT-6 mesopores, have better adsorption characteristics due to the features of the three-dimensional cubic structure, the larger pore volume and thickness of the walls of the framework. The maximum micropore volume is observed in CMK-3 and CMK-8, obtained by carbonization of polyphenol-formaldehyde and polydivinylbenzene, while the greatest specific surface area is observed on carbonization of sucrose, where the maximum hydrogen adsorption capacity is achieved at a level of ∼1.4 wt.% (77 K, 1 atm). We show that the mesopore surface coverage by hydrogen in carbon mesoporous molecular sieves increases as the degree of graphitization increases.  相似文献   

3.
《Comptes Rendus Chimie》2014,17(7-8):717-724
SBA-15-based solids combining semiconductive oxides (Sn and In) and noble metal (Pt) were prepared by an incipient wet impregnation method in order to obtain materials for gas sensing. The materials were characterized by XRD, BET adsorption, SEM, and TEM. The BET analysis allowed obtaining details about the specific surface areas, pore size, and modifications due to the indium and/or tin oxides followed by the Pt deposition. XRD data revealed that In2O3 did not enter the mesopores of SBA-15, preventing also the entrance of the Pt nanoparticles in the mesopores. On the other hand, SnO2 nanoparticles further doped with Pt could enter the mesoporous network, affording a SBA-15 material loaded with SnO2 and very small Pt nanoparticles with high dispersion. Tablets obtained by pressing the modified SBA-15 were tested as sensitive materials for propene and hydrogen detection.  相似文献   

4.
A new strategy adsorption-assistant detection of trace uranyl ion is developed in this work employing fluorescence techniqe. Specifically, mesoporous molecular sieve SBA-15 is introduced in the process of determination of uranyl by esculin to enhance the sensitivity and selectivity. A linear detecting range of 0.001–0.05 μM and a limit of detection of 6 nM are achieved, which is probably due to the adsorption of both esculin and uranyl ion onto SBA-15. The KSV value is 8.69?×?106 mol?1 L, which was ca. 40 times of that without SBA-15.  相似文献   

5.
Ordered mesoporous silica material was synthesized from a low-cost precursor, sugarcane leaf ash, was used as a support matrix for lipase for the production of biodiesel. The mesoporous samples were characterized using Fourier transform infra red spectroscopy. The surface topography and morphology of the mesoporous materials were studied using scanning electron microscope. The pore diameter, pore volume, Brunauer Emmett and Teller surface area of the mesoporous material were determined by N2 gas adsorption technique. Different pore size Santa Barbara Acid-15 (SBA-15) samples were synthesized and their lipase immobilization capacity and specific enzyme activity of immobilization lipase were determined and compared. Lipase from Candida Antarctica immobilized on SBA-15 (C) had shown maximum percentage immobilization and specific enzyme activity. The immobilized lipase mesoporous matrix was used for biodiesel production from crude non-edible Calophyllum inophyllum oil. The percentage yield of fatty acid methyl ester, 97.6 % was obtained under optimized conditions: 100 mg of lipase immobilized on SBA-15, 6:1 methanol to oil molar ratio, the reaction of 2 g C. inophyllum oil with methanol.  相似文献   

6.
The direct electron transfer between hemoglobin (Hb) and an electrode was realized by first immobilizing the protein onto SBA-15.The results of the immobilization showed that the adsorption was pH-dependent with a maximum adsorption near the isoelectric point of the protein, and SBA-15 with a larger pore diameter showed greater adsorption capacity for Hb. UV–vis spectroscopy and nitrogen adsorption analysis indicated that Hb was adsorbed within the channel of SBA-15 and no significant denaturation occurred to the protein. The Hb/SBA-15 composite obtained was used for the fabrication of a Hb biosensor to detect hydrogen peroxide. A pair of well-defined redox peaks at −0.337 and −0.370 V on the Hb/SBA-15 composite modified glassy carbon electrode was observed, and the electrode reactions showed a surface-controlled process with a single proton transfer at a scan rate range from 20 to 1,000 mV/s. The sensor showed a fast amperometric response, a low detection limit (2.3 × 10−9 M) and good stability for the detection of H2O2. The electrochemical results indicated that the immobilized Hb still retained its biological activity.  相似文献   

7.
Two types of ordered mesoporous ZSM-5 zeolites with different mesopores were synthesized by a two-step method. First,carbonaceous SBA-15 was produced by in situ carbonization of SBA-15/P123 composite. Then the obtained SBA-15/C composite was transformed into crystallized mesoporous ZSM-5 by impregnation TPAOH followed by steam-assisted crystallization. The final calcined samples synthesized with typical SBA-15/P123 precursor showed a wormlike morphology with the mean mesopore size of 4.6 nm, while samples synthesized with the addition of trimethylbenzene as swelling agent in the precursor exhibited the morphology of microsphere with the mesopore size of about 9.5 nm. Both two types of mesoporous ZSM-5 zeolites exhibited large surface area and mesopore structure. The steam-assisted crystallization(SAC) was performed with lower consumption of solvents. This two-step method may also be suitable for synthesizing other ordered mesoporous zeolites used as catalysts in some catalytic processes.  相似文献   

8.
A loading of ramipril in SBA-15 (Santa Barbara Amorphous) mesoporous material was studied. (SBA-15)-ramipril composite material was characterized by chemical analysis, infrared spectroscopy, powder X-ray diffraction, low temperature N2 adsorption–desorption at 77 K characterization techniques. Ramipril drug release processes from SBA-15 host to simulated body fluid (SBF), simulated gastric juice (SGJ), simulated intestinal fluid (SIF) were monitored in a simulated way and actions of the sustained release of (SBA-15)-ramipril was studied. The results showed that the loading amount of ramipril drug in SBA-15 was 90.30 mg/g. The cumulative sustained release rate of ramipril composite drug in SBF achieved 99.7 % after 27 h. When the sustained release of composite drug in SGJ was 8 h, the maximum cumulative sustained release ratio achieved 54.9 %. When the sustained release of composite drug was 9 h in SIF, the maximum cumulative sustained release ratio achieved 34.9 %. The method described in this study is suitable for carrying ramipril drug on SBA-15, and a new carrier to load ramipril drug was found. Meanwhile, the efficacy of ramipril drug and time efficacy could be improved.  相似文献   

9.
Direct hydrothermal method is employed for incorporating iron into the pore structure of SBA-15. The resultant materials were analyzed by X-ray diffraction (XRD) patterns, N2 sorption isotherm and X-ray photoelectron spectroscopy (XPS). The characterizations of XRD patterns and XPS revealed that iron nanoparticles were present as highly dispersed nanoclusters in the well-ordered mesoporous channels of SBA-15. The characterizations of t-plot reveal only microporous channels of SBA-15 are confirmed to be filled with iron nanoparticles, leaving the mesopores unaffected. The supported material still maintained its ordered mesoporous structure similar to SBA-15 and possessed high surface area, large pore volume and uniform pore size.  相似文献   

10.
Magnetically active, thermally stable, and ordered mesoporous resin (MOMR-200) and carbon (MOMC-200) monoliths were prepared by one-pot hydrothermal synthesis from resol, copolymer surfactant, and iron cations at high-temperature (200 °C), followed by calcination at 360 °C and carbonization at 600 °C. X-ray diffraction results show that both MOMR-200 and MOMC-200 have ordered hexagonal mesoporous symmetry, and N2 isotherms indicate that these samples have uniform mesopores (3.71, 3.45 nm), high surface area (328, 621 m2/g) and large pore volume (0.31, 0.43 cm3/g). Transmission electron microscopy shows that iron nanoparticles, which are superparamagnetic in nature, are dispersed in the network. More importantly, the high temperature (200 °C) products exhibit much better stability than the samples synthesized at low temperature (100 °C). Interestingly, MOMC-200 has higher adsorption capacity for organic dyes when compared with commercial adsorbents (activated carbon and macroporous resin: XAD-4). Combining the advantages such as magnetically active, thermally stable networks, ordered and open mesopores, high surface area, large pore volume, adsorption of pollutants in water and desorption in ethanol solvent, MOMC-200 is potentially important for water treatments.  相似文献   

11.
La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation. Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorption, FTIR spectroscopic analysis, thermogravimetric analysis, and the total amount of acidity of catalyst was estimated by TPD of NH3. The results indicate that lanthanum has been incorporated into SBA-15 molecular sieve. The prepared materials(La-SO42-/SBA-15) keep the highly ordered mesoporous two-dimensional hexagonal structure and do not change the mesoporous channel structure of the support SBA-15. The catalyst showed best catalytic activity in the synthesis of n-butyl acetate. The optimum conditions of the esterification by orthogonal experiments were studied: the molar ratio of n-butanol to acetic acid 1:1.2, the amount of catalyst 7.5%, reaction time 80 min. The yield of n-butyl acetate could reach 93.2% under the optimum conditions. The catalyst was recyclable, cost effective and environmental friendly.  相似文献   

12.
Ni-incorporated SBA-15 magnetic composites were two-stage hydrothermal synthesized from initial strong acidic media through a pH-adjusting method. The structure, morphology, surface area and pore size distribution of the samples were systematically characterized by using XRD, FT-IR, SEM, TEM and N2 physical adsorption techniques. It was found that, when pH was adjusted to 7, the obtained sample still could exhibit hexagonal mesostructure, very similar to that of the pristine SBA-15 except for a slightly reduced long-range ordering and surface area. However, an increase in the unit cell and wall thickness of the samples suggested the more Ni species were incorporated into the framework of SBA-15. A further increase in pH to 9 produced deterioration of long-range ordering of the sample, possibly resulting from the blocking of some mesopores. Thus, the pH-adjusting method played an important role on the structure of Ni–SBA-15 composites. Measurements taken with increasing applied field revealed the samples having superparamagnetic behaviors. Furthermore, the saturation magnetization values were increased with the more Ni species transforming into magnetic nanoparticles by the increasing pH.  相似文献   

13.
《Comptes Rendus Chimie》2014,17(7-8):775-784
Four types of SBA-15 were prepared with different times and temperatures of treatment in order to obtain a range of micropore sizes. CO oxidation was used as a probe reaction in order to evaluate the nature of the active species when SBA-15s were doped with ca 10% Ag deposited from an AgNO3 solution and calcined or reduced at 350 °C. The texture (TEM, nitrogen physisorption), structure (XRD) and reducibility (TPR) of the various catalysts (Ag/SBA-15) were studied and compared to those of a catalyst prepared by deposition of silver on fumed silica as a reference. These catalysts differ initially by the nature of silica and by pore sizes. In CO oxidation, pre-reduced catalysts are more active than pre-oxidised ones. This has to do with two phenomena, i.e. sintering, which produces large inactive silver particles, and formation of active silver species in the form of small Ag2O particles.  相似文献   

14.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征。将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响。结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3-5 nm)及较大的比表面积(411-541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积。亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能。5.3% Ag/SBA-15中的Ag粒径为5-6 nm,且均匀分散于载体孔道中,反应温度为220℃时,苯甲醇转化率为87%,苯甲醛选择性为95%;240℃时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240-300℃范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力。催化剂经活化再生可以连续使用40 h,选择性基本保持不变。  相似文献   

15.
As a typical volatile organic compound, toluene is a hazardous material for human health and the environment, and currently, the development of catalysts for its oxidation into CO2 and water is crucial. The series of Ag-CeO2/SBA-15 catalysts is synthesized by wetness impregnation techniques and characterized by a number of physical-chemical methods (nitrogen [N2] physisorption, small angle X-ray scattering [SAXS], transmission electron microscopy [TEM], and temperature-programmed reduction [TPR]). The toluene sorption and catalytic properties in toluene oxidation are studied. Small silver [Ag] and cerium oxide [ceria, CeO2] particles with sizes below 3 nm are predominantly formed in the ordered structure of Santa Barbara Amorphous-15 [SBA-15]. The interactions between the Ag and CeO2 nanoparticles are established. Temperature-programmed desorption of toluene [TPD-C7H8] analysis shows that physical adsorption of toluene occurs on pristine SBA-15 material, while the introduction of either silver or ceria to SBA-15 leads to the appearance of additional strongly bound chemisorbed toluene on such sites. When both Ag and CeO2 are introduced, only chemisorbed toluene is formed over the Ag-CeO2/SBA-15 catalyst, and the highest catalytic activity in toluene oxidation is observed over this catalyst (T98% = 233 °C, 0.2% C6H5CH3) that is attributed to the synergistic effect of ceria [CeO2] and silver [Ag].  相似文献   

16.
A copper(II) Schiff base complex has been immobilized onto SBA-15 silica through a stepwise procedure and tested as an oxidation catalyst. BET surface area, total pore volume and average pore width of the SBA-15 all decrease after stepwise modification of SBA-15, while the structure of the support remains intact. The molar ratio of Cu2+/Schiff base is ca. 1/2 in the synthesized material. Catalytic tests showed that the supported copper complex catalyzes the oxidation of benzyl alcohol with 30 % conversion and 89 % selectivity to benzaldehyde when water is used as the solvent.  相似文献   

17.
SBA-15 organosilicas containing amine, thiol, vinyl and phenyl pendant groups were synthesized by co-condensation of tetraethoxysilane and appropriate alkoxysilanes in the presence of Pluronic P123 surfactant. The obtained materials have usually well-developed porous structure—values of specific surface area are in the range 820–950 m2/g. Sizes of the ordered mesopores are in the range 7.5–9.1 nm while the interconnecting pores are 2.3–3.1 nm in size. It was establish that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with tetraethoxysilane. Several instrumental techniques such as infrared spectroscopy, X-ray diffraction, nitrogen sorption measurements, elemental analysis, transmission electron microscopy. FT-IR photoacoustic spectroscopy (FT-IR/PAS) was used to determine chemical composition of the final materials and to monitor the efficiency of the template removal.  相似文献   

18.
负载型P-Mo-V/SBA-15催化剂上的甲烷选择氧化反应   总被引:3,自引:0,他引:3  
以磷钼钒杂多酸(H5PMo10V2O40)为前驱体、介孔SBA-15为载体, 采用浸渍法制备不同负载量的P-Mo-V氧化物催化剂. 在甲烷选择氧化反应中, 考察了负载量、反应温度、空速等对甲烷转化率和产物选择性的影响. 结果表明, 催化剂对甲烷选择氧化制甲醛具有较高活性, 甲烷转化率随负载量的增大和反应温度的升高而提高, 甲醛的选择性随负载量的增大先升后降. 反应温度为640 ℃、空速为48300 L•kg-1•h-1、氧化物负载量w=2.89%时, 甲醛的时空产率最高(295 g•kgcat-1•h-1). 多种表征表明, 氧化物负载量w≤2.89%时, P-Mo-V氧化物在载体介孔孔道内以高分散形式存在. 催化剂的酸性和氧化还原性质与负载量相关, NH3-TPD和H2-TPR的测试结果表明, 较弱的酸性位和较低还原温度的活性组分有利于甲烷选择氧化制甲醛.  相似文献   

19.
田博士  杨春 《化学学报》2008,66(5):505-510
采用自由基引发原位聚合(in situ polymerization)的方法合成了温敏性聚N-异丙基丙烯酰胺(PNIPAAm)/介孔分子筛SBA-15纳米复合物. 用FT-IR、XRD、TEM、低温N2吸附-脱附、TG和DSC等手段对复合物进行了表征, 结果表明, 单体N-异丙基丙烯酰胺(NIPAAm)在介孔孔内发生了原位聚合, 聚合物PNIPAAm比较均匀地附于孔壁, 含量达24%左右. 这一聚合和孔内填充没有破坏SBA-15的有序六方结构, 但使样品的表面积、孔径、孔容减小. 同时, 这一有机-无机纳米复合物仍然保持PNIPAAm的温度响应性, 最低临界溶解温度(LCST)与纯PNIPAAm相似.  相似文献   

20.
Mesoporous carbon of regular structure was subjected to oxidation by ammonium persulfate at 30, 60 or 100 °C. The mesostructure and pore evolution were characterised by XRD, TEM, and N2 sorption techniques. The functional groups present on the surface of the carbon materials were identified by FTIR and thermogravimetric studies. It was established that the micropores and small mesopores could be blocked by the surface oxides attached under mild oxidation. High densities of surface oxygen complexes, especially carboxylic groups, were generated on the surface of mesoporous carbons. All materials obtained were tested for the removal of Auramine-O from aqueous solution. Adsorption experiments were carried out as batch studies at different contact time, pH and initial dye concentration. Removal of this cationic dye in basic solutions was more effective than in acidic solutions. The highest sorption capacity towards Auramine-O was obtained for the carbon sample oxidised by ammonium persulfate solution at 100 °C. Fitting equilibrium data to Langmuir and Freundlich isotherms showed that Langmuir model was more suitable to describe the Auramine-O adsorption. The changes in standard enthalpy (ΔH0), standard entropy (ΔS0) and Gibbs free energy (ΔG0) were analysed. Thermodynamic study showed that the adsorption of Auramine-O was a spontaneous and exothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号