首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Full a-dislocations on the (0001) basal plane, \((10\bar 10)\) prismatic plane, and \((10\bar 11)\) and \((10\bar 12)\) pyramidal planes in pure magnesium are investigated by using the Peierls-Nabarro model combined with generalized stacking fault (GSF) energies from first-principles calculations. The results show that the \(\left( {10\bar 11} \right)\left\langle {11\bar 20} \right\rangle\) and \(\left( {10\bar 12} \right)\left\langle {11\bar 20} \right\rangle\) slip modes have nearly the same GSF energy barriers, which are obviously larger than the GSF energy barriers of the \(\left( {0001} \right)\left\langle {11\bar 20} \right\rangle\) and \(\left( {10\bar 10} \right)\left\langle {11\bar 20} \right\rangle\) slip modes. For both edge and screw full dislocations, the maximum dislocation densities, Peierls energies, and stresses of dislocations on the \((10\bar 10)\) , (0001), \((10\bar 11)\) , and \((10\bar 12)\) planes eventually increase. Moreover, the Peierls energies and the stresses of screw full dislocations are always lower than those of edge full dislocations for all slip systems. Dislocations on the \((10\bar 11)\) and \((10\bar 12)\) pyramidal planes possess smaller core energies, while the \((10\bar 10)\) prismatic plane has the largest ones, implying that the formation of full dislocations on the \((10\bar 10)\) plane is more difficult.  相似文献   

2.
The present paper introduces both the notions of Lagrange and Poisson stabilities for semigroup actions. Let \(S\) be a semigroup acting on a topological space \(X\) with mapping \(\sigma :S\times X\rightarrow X\) , and let \(\mathcal {F}\) be a family of subsets of \(S\) . For \(x\in X\) the motion \(\sigma _{x}:S\rightarrow X\) is said to be forward Lagrange stable if the orbit \(Sx\) has compact closure in \(X\) . The point \(x\) is forward \(\mathcal {F}\) -Poisson stable if and only if it belongs to the limit set \(\omega \left( x,\mathcal {F}\right) \) . The concept of prolongational limit set is also introduced and used to describe nonwandering points. It is shown that a point \(x\) is \( \mathcal {F}\) -nonwandering if and only if \(x\) lies in its forward \(\mathcal {F} \) -prolongational limit set \(J\left( x,\mathcal {F}\right) \) . The paper contains applications to control systems.  相似文献   

3.
Due to the results of Lewowicz and Tolosa expansivity can be characterized with the aid of Lyapunov function. In this paper we study a similar problem for uniform expansivity and show that it can be described using generalized cone-fields on metric spaces. We say that a function \(f:X\rightarrow X\) is uniformly expansive on a set \(\varLambda \subset X\) if there exist \(\varepsilon >0\) and \(\alpha \in (0,1)\) such that for any two orbits \(\hbox {x}:\{-N,\ldots ,N\} \rightarrow \varLambda \) , \(\hbox {v}:\{-N,\ldots ,N\} \rightarrow X\) of \(f\) we have $$\begin{aligned} \sup _{-N\le n\le N}d(\hbox {x}_n,\hbox {v}_n) \le \varepsilon \implies d(\hbox {x}_0,\hbox {v}_0) \le \alpha \sup _{-N\le n\le N}d(\hbox {x}_n,\hbox {v}_n). \end{aligned}$$ It occurs that a function is uniformly expansive iff there exists a generalized cone-field on \(X\) such that \(f\) is cone-hyperbolic.  相似文献   

4.
5.
L. Deseri  D. R. Owen 《Meccanica》2014,49(12):2907-2932
A recent field theory of elastic bodies undergoing non-smooth submacroscopic geometrical changes (disarrangements) provides a setting in which, for a given homogeneous macroscopic deformation \(F\) of the body, there are typically a number of different states \(G\) of smooth, submacroscopic deformation (disarrangement phases) available to the body. A tensorial consistency relation and the inequality \(\det G\le \det F\) that guarantees that \(F\) accommodates \(G\) determine the totality of disarrangement phases \(G\) corresponding to \(F\) , and it is natural to seek for a given \(F\) those disarrangement phases that minimize the Helmholtz free energy (stable disarrangement phases). We introduce these concepts in the particular context of continuous bodies comprised of many small elastic bodies (elastic aggregates) and in the context where disarrangements do not contribute to the Helmholtz free energy (purely dissipative disarrangements). In this setting, the Helmholtz free energy response \(G\longmapsto \varPsi (G)\) of the pieces of the aggregate determines the totality of disarrangement phases corresponding to \(F\) , which necessarily includes the phase \(G=F\) (compact phase) in which every piece of the aggregate undergoes the given macroscopic deformation \(F\) . When the response function \(\varPsi \) is isotropic and smooth, and when \(\varPsi \) possesses standard semiconvexity and growth properties, the body also admits phases of the form \(G=\zeta _{\min }R\) (loose phases) with \(R\) an arbitrary rotation, provided that \(\zeta _{\min }R \) satisfies the accommodation inequality \(\zeta _{\min }^{3}\le \det F\) . Loose phases, when available, achieve the global minimum \(\varPsi (\zeta _{\min }R)\) of the free energy and consequently are stable and stress-free. When \( \varPsi (G)\) has the specific form \(\varPsi _{\alpha \beta }(G)=(\alpha /2)(\det G)^{-2}+(\beta /2)tr(GG^{T})\) , with \(\alpha \) , \(\beta \) given elastic constants, we determine all of the disarrangement phases corresponding to \(F\) . These include not only the compact and loose phases, but also disarrangement phases \(G\) in which the stress \(D\varPsi (G)\) is uniaxial or planar. Our main result (“stability implies no-tension”) is the assertion that every stable disarrangement phase for \(\varPsi _{\alpha \beta }\) cannot support tensile tractions, and our treatment of elastic aggregates thus provides a natural setting for the emergence of no-tension materials whose response in compression is non-linear. Existing treatments of no-tension materials assume at the outset that the body cannot support tension and that the response in compression is linear.  相似文献   

6.
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation \(\left\langle l \right\rangle \propto \varepsilon ^{-1/2}\) , where \(\varepsilon \) is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases \(\left\langle l \right\rangle \) can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.  相似文献   

7.
The permeability of coalbed methane reservoirs may evolve during the recovery of methane and injection of gas, due to the change of effective stress and gas adsorption and desorption. Experimental and numerical studies were conducted to investigate the sorption-induced permeability change of coal. This paper presents the numerical modeling part of the work. It was found that adsorption of pure gases on coal was well represented by parametric adsorption isotherm models in the literature. Based on the experimental data of this study, adsorption of pure \(\hbox {N}_2\) was modeled using the Langmuir equation, and adsorption of pure \(\hbox {CO}_2\) was well represented by the N-Layer BET equation. For the modeling of CO \(_2\) & N \(_2\) binary mixture adsorption, the ideal adsorbed solution (IAS) model and the real adsorbed solution (RAS) model were used. The IAS model estimated the total amount of mixture adsorption and the composition of the adsorbed phase based on the pure adsorption isotherms. The estimated total adsorption and adsorbed-phase composition were very different from the experimental results, indicating nonideality of the CO \(_2\) –N \(_2\) –Coal-adsorption system. The measured sorption-induced strain was linearly proportional to the total amount of adsorption despite the species of the adsorbed gas. Permeability reduction followed a linear correlation with the volumetric strain with the adsorption of pure \(\hbox {N}_2\) and the tested CO \(_2\) & N \(_2\) binary mixtures, and an exponential correlation with the adsorption of pure \(\hbox {CO}_2\) .  相似文献   

8.
This paper is on the so called inverse problem of ordinary differential equations, i.e. the problem of determining the differential system satisfying a set of given properties. More precisely we characterize under very general assumptions the ordinary differential equations in \(\mathbb {R}^N\) which have a given set of either \(M\) partial integrals, or \(M first integral, or \(M partial and first integrals. Moreover, for such systems we determine the necessary and sufficient conditions for the existence of \(N-1\) independent first integrals. We give two relevant applications of the solutions of these inverse problem to constrained Lagrangian and Hamiltonian systems respectively. Additionally we provide the general solution of the inverse problem in dynamics.  相似文献   

9.
This paper presents a robust mixed \(H_2 /H_\infty \) control method for wave-excited offshore jacket platforms. Its objective was to design a controller that minimizes the upper bound of the \(H_2 \) performance measure on platform dynamics satisfying some \(H_\infty \) norm bound constraint simultaneously. Based on mixed \(H_2 /H_\infty \) control theory and linear matrix inequality techniques, a novel approach to stabilize offshore platform vibration with constrained \(H_2 /H_\infty \) performances is proposed. Uncertainties of the wave excitation are considered in dynamic performance analysis of offshore platforms. A reduced mode offshore platform structure under wave excitation is analyzed, and simulations are used to verify the effectiveness of the proposed approach. Compared with existing \(H_\infty \) control methods, the proposed approach makes a significant improvement for dynamic performances of offshore platforms under random wave excitation.  相似文献   

10.
This paper is concerned with the output feedback \(\mathcal {H}_\infty \) control problem for a class of stochastic nonlinear systems with time-varying state delays; the system dynamics is governed by the stochastic time-delay It \(\hat{o}\) -type differential equation with state and disturbance contaminated by white noises. The design of the output feedback \(\mathcal {H}_\infty \) control is based on the stochastic dissipative theory. By establishing the stochastic dissipation of the closed-loop system, the delay-dependent and delay-independent approaches are proposed for designing the output feedback \(\mathcal {H}_\infty \) controller. It is shown that the output feedback \(\mathcal {H}_\infty \) control problem for the stochastic nonlinear time-delay systems can be solved by two delay-involved Hamilton–Jacobi inequalities. A numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

11.
We revisit the Kilbas and Saigo functions of the Mittag-Leffler type of a real variable \(t\) , with two independent real order-parameters. These functions, subjected to the requirement to be completely monotone for \(t>0\) , can provide suitable models for the responses and for the corresponding spectral distributions in anomalous (non–Debye) relaxation processes, found e.g. in dielectrics. Our analysis includes as particular cases the classical models referred to as Cole–Cole (the one-parameter Mittag-Leffler function) and to as Kohlrausch (the stretched exponential function). After some remarks on the Kilbas and Saigo functions, we discuss a class of fractional differential equations of order \(\alpha \in (0,1]\) with a characteristic coefficient varying in time according to a power law of exponent \(\beta \) , whose solutions will be presented in terms of these functions. We show 2D plots of the solutions and, for a few of them, the corresponding spectral distributions, keeping fixed one of the two order-parameters. The numerical results confirm the complete monotonicity of the solutions via the non-negativity of the spectral distributions, provided that the parameters satisfy the additional condition \(0<\alpha +\beta \le 1\) , assumed by us.  相似文献   

12.
Ning Li  Jinde Cao 《Nonlinear dynamics》2014,77(4):1363-1375
This paper is concerned with global exponential synchronization problem for a class of switched delay networks with interval parameters uncertainty, different from the most existing results, without constructing complex Lyapunov–Krasovskii functions; \(\omega \) -matrix measure method is firstly introduced to switched interval networks, combining Halanay inequality technique, designing proper intermittent and non-intermittent control strategy; some easy-to-verify synchronization criteria are given to ensure the global exponential synchronization of switched interval networks under arbitrary switching rule and for admissible interval uncertainties. Moreover, as an application, the proposed scheme can be applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results and show the obtained results via employing \(\omega \) -measure are superior to previous results by using \(1\) -measure.  相似文献   

13.
Xing Lü  Juan Li 《Nonlinear dynamics》2014,77(1-2):135-143
With symbolic computation, this paper investigates some integrable properties of a two-dimensional generalization of the Korteweg-de Vries equation, i.e., the Bogoyavlensky–Konoplechenko model, which can govern the interaction of a Riemann wave propagating along the \(y\) -axis and a long wave propagating along the \(x\) -axis. Within the framework of Bell-polynomial manipulations, Bell-polynomial expressions are firstly given, which then are cast into bilinear forms. The \(N\) -soliton solutions in the form of an \(N\) th-order polynomial in the \(N\) exponentials and in terms of the Wronskian determinant are, respectively, constructed with the Hirota bilinear method and Wronskian technique. Bilinear Bäcklund transformation is also derived with the achievement of a family of explicit solutions.  相似文献   

14.
We investigated the interfacial tension (IFT) effect on fluid flow characteristics inside micro-scale, porous media by a highly efficient multi-phase lattice Boltzmann method using a graphics processing unit. IFT is one of the most important parameters for carbon capture and storage and enhanced oil recovery. Rock pores of Berea sandstone were reconstructed from micro-CT scanned images, and multi-phase flows were simulated for the digital rock model at extremely high resolution (3.2  \(\upmu \) m). Under different IFT conditions, numerical analyses were carried out first to investigate the variation in relative permeability, and then to clarify evolution of the saturation distribution of injected fluid. We confirmed that the relative permeability decreases with increasing IFT due to growing capillary trapping intensity. It was also observed that with certain pressure gradient \(\Delta P\) two crucial IFT values, \(\sigma _{1}\) and \(\sigma _{2}\) , exist, creating three zones in which the displacement process has totally different characteristics. When \(\sigma _{1}< \sigma < \sigma _{2}\) , the capillary fingering patterns are observed, while for \(\sigma < \sigma _{1}\) viscous fingering is dominant and most of the passable pore spaces were invaded. When \(\sigma > \sigma _{2}\) the invading fluid failed to break through. The pore-throat-size distribution estimated from these crucial IFT values ( \(\sigma _{1 }\) and \(\sigma _{2})\) agrees with that derived from mercury porosimetry measurements of Berea sandstone. This study demonstrates that the proposed numerical method is an efficient tool for investigating hydrological properties from pore structures.  相似文献   

15.
In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, \(R_\mathrm{C}\) = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, \(d^0\) , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0 \(R_\mathrm{C}\) , within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when \(d^0\) is greater than 8.0 \(R_\mathrm{C}\) . The percentage of intact spores varied from 0 to 100 for 3.0 \(R_\mathrm{C}\) \( 8.0 \(R_\mathrm{C}\) with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.  相似文献   

16.
To improve the quality of parameter optimization, estimability analysis has been proposed as the first step before inverse modeling. When using field data of irrigation experiments for the determination of soil hydraulic parameters, wetting and drying processes may complicate optimization. The objectives of this study were to compare estimability analysis and inverse optimization of the soil hydraulic parameters in the models with and without considering hysteresis of the soil water retention function. Soil water pressure head data of a field irrigation experiment were used. The one-dimensional vertical water movement in variably saturated soil was described with the Richards equation using the HYDRUS-1D code. Estimability of the unimodal van Genuchten–Mualem hydraulic model parameters as well as of the hysteretic parameter model of Parker and Lenhard was classified according to a sensitivity coefficient matrix. The matrix was obtained by sequentially calculating effects of initial parameter variations on changes in the simulated pressure head values. Optimization was carried out by means of the Levenberg-Marquardt method implemented in the HYDRUS-1D code. The parameters \(\alpha , K_{s}, \theta _{s}\) , and \(n\) in the nonhysteretic model were found sensitive and parameter \(\theta _{s}\) strongly correlated with parameter \(n\) . When assuming hysteresis, the estimability was decreased with soil depth for \(K_{s}\) and \(\alpha ^{d}\) , and increased for \(\theta _{s}\) and n. Among the shape parameters, \(\alpha ^{w}\) was the most estimable. The hysteretic model could approximate the pressure heads in the soil by considering parameters from wetting and drying periods separately as initial estimates. The inverse optimization could be carried out more efficiently with most estimable parameters. Despite the remaining weaknesses of the local optimization algorithm and the inflexibility of the unimodal van Genuchten model, the results suggested that estimability analysis could be considered as a guidance to better define the optimization scenarios and then improved the determination of soil hydraulic parameters.  相似文献   

17.
We study the statistics of the vertical motion of inertial particles in strongly stratified turbulence. We use Kinematic Simulation (KS) and Rapid Distortion Theory (RDT) to study the mean position and the root mean square (rms) of the position fluctuation in the vertical direction. We vary the strength of the stratification and the particle inertial characteristic time. The stratification is modelled using the Boussinesq equation and solved in the limit of RDT. The validity of the approximations used here requires that $ \sqrt{{L}/{g}} < {2\pi}/{\mathcal{N}} < \tau_{\eta} $ , where τ η is the Kolmogorov time scale, g the gravitational acceleration, L the turbulence integral length scale and $\mathcal{N}$ the Brunt–Väisälä frequency. We introduce a drift Froude number $Fr_{d} = \tau_p g / \mathcal{N} L$ . When Fr d ?<?1, the rms of the inertial particle displacement fluctuation is the same as for fluid elements, i.e. $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 1.22\, u'/\mathcal{N} + \mbox{oscillations}$ . However, when Fr d ?>?1, $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 267 \, u' \tau_p$ . That is the level of the fluctuation is controlled by the particle inertia τ p and not by the buoyancy frequency $\mathcal{N}$ . In other words it seems possible for inertial particles to retain the vertical capping while loosing the memory of the Brunt–Väisälä frequency.  相似文献   

18.
Li and Qiao studied the bifurcations and exact traveling wave solutions for the generalized two-component Camassa–Holm equation $$\begin{aligned} \left\{ \begin{array}{l} m_{t}+\sigma um_{x}-Au_{x}+2m \sigma u_{x}+3(1-\sigma )uu_{x}\\ \quad +\rho \rho _{x}=0, \\ \rho _{t} +(\rho u)_{x}=0, \end{array} \right. \end{aligned}$$ \(m=u-u_{xx}, A>0\) . They showed that there exist solitary wave solutions, cusp wave solutions, and periodic wave solutions for the equation, and their analysis focused on the bifurcations when \(\sigma >0\) . In this paper, we first complement the bifurcations when \(\sigma <0\) by following the same procedure as that of Li, and then show the existence and implicit expressions of several new types of bounded wave solutions, including solitary waves, periodic waves, compacton-like waves, and kink-like waves. In addition, the numerical simulations of the bounded wave solutions are given to show the correctness of our results.  相似文献   

19.
When a shock wave ejected from the exit of a 5.4-mm inner diameter, stainless steel tube propagated through grid turbulence across a distance of 215 mm, which is 5–15 times larger than its integral length scale \(L_{u}\) , and was normally incident onto a flat surface; the peak value of post-shock overpressure, \(\Delta P_{\mathrm{peak}}\) , at a shock Mach number of 1.0009 on the flat surface experienced a standard deviation of up to about 9 % of its ensemble average. This value was more than 40 times larger than the dynamic pressure fluctuation corresponding to the maximum value of the root-mean-square velocity fluctuation, \(u^{\prime }= 1.2~\hbox {m}/\hbox {s}\) . By varying \(u^{\prime }\) and \(L_{u}\) , the statistical behavior of \(\Delta P_{\mathrm{peak}}\) was obtained after at least 500 runs were performed for each condition. The standard deviation of \(\Delta P_{\mathrm{peak}}\) due to the turbulence was almost proportional to \(u^{{\prime }}\) . Although the overpressure modulations at two points 200 mm apart were independent of each other, we observed a weak positive correlation between the peak overpressure difference and the relative arrival time difference.  相似文献   

20.
Compacted crushed rock salt is considered as potential backfill material in repositories for nuclear waste. To evaluate the sealing properties of this material knowledge concerning the nature of the pore space is of eminent interest. Here, the pore microstructures of crushed rock salt samples with different compaction states were investigated by X-ray (XCT) computed tomography and Focused Ion Beam nanotomography (FIB-nt). Based on these methods the pore microstructures were reconstructed and quantitatively analyzed with respect to porosity, connectivity and percolation properties. Regarding pores with radii \(> 4\,\upmu \hbox {m}\) , porosity differs substantially in the two analyzed samples ( \(\phi = 0.01\) and 0.10). The pore microstructures are considered isotropic in connectivity and percolation threshold. Using two finite-scaling schemes we found percolation thresholds with critical porosities \(\phi _{c} > 0.05\) . Based on statistical considerations, the millimeter size samples that can be analyzed by XCT are large enough to provide a meaningful picture of the pore geometry related to macroporosity. The samples contain also a small fraction (i.e. \(< 0.01\) ) of pores with radii \(< 1\,\upmu \hbox {m}\) , which were resolved by FIB-nt. Often these pores can be found along grain boundaries. These pores are granular shaped and are not connected to each other. Typical samples size that can be analyzed by FIB-nt is on the order of tens of microns, which turned out to be too small to provide representative geometric information unless an effort is made that involves several FIB-nt realizations per sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号