首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let \(G\) be a finite group and \(\text {cd}(G)\) be the set of irreducible character degrees of \(G\) . In this paper we prove that if \(p\) is a prime number, then the simple group \(\text {PSL}(2,p)\) is uniquely determined by its order and some information about its character degrees. In fact we prove that if \(G\) is a finite group such that (i) \(|G|=|\text {PSL}(2,p)|\) , (ii) \(p\in \text {cd}(G)\) , (iii) \(\text {cd}(G)\) has an even integer, and (iv) there does not exist any element \(a\in \text {cd}(G)\) such that \(2p\mid a\) , then \(G\cong \text {PSL}(2,p)\) . As a consequence of our result we get that \(\text {PSL}(2,p)\) is uniquely determined by its order and the largest and the second largest character degrees.  相似文献   

2.
Based on a motivation coming from the study of the metric structure of the category of finite dimensional vector spaces over a finite field \(\mathbb {F}\) , we examine a family of graphs, defined for each pair of integers \(1 \le k \le n\) , with vertex set formed by all injective linear transformations \(\mathbb {F}^k \rightarrow \mathbb {F}^n\) and edges corresponding to pairs of mappings, \(f\) and \(g\) , with \(\lambda (f,g)= \dim \mathrm{Im }(f-g)=1 \) . For \(\mathbb {F}\cong \mathrm{GF }(q)\) , this graph will be denoted by \(\mathrm{INJ }_q(k,n)\) . We show that all such graphs are vertex transitive and Hamiltonian and describe the full automorphism group of each \(\mathrm{INJ }_q (k,n)\) for \(k . Using the properties of line-transitive groups, we completely determine which of the graphs \(\mathrm{INJ }_q (k,n)\) are Cayley and which are not. The Cayley ones consist of three infinite families, corresponding to pairs \((1,n),\,(n-1,n)\) , and \((n,n)\) , with \(n\) and \(q\) arbitrary, and of two sporadic examples \(\mathrm{INJ }_{2} (2,5)\) and \(\mathrm{INJ }_{2}(3,5)\) . Hence, the overwhelming majority of our graphs is not Cayley.  相似文献   

3.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

4.
This article studies commutative orders, that is, commutative semigroups having a semigroup of quotients. In a commutative order \(S\) , the square-cancellable elements \(\mathcal {S}(S)\) constitute a well-behaved separable subsemigroup. Indeed, \(\mathcal {S}(S)\) is also an order and has a maximum semigroup of quotients \(R\) , which is Clifford. We present a new characterisation of commutative orders in terms of semilattice decompositions of \(\mathcal {S}(S)\) and families of ideals of \(S\) . We investigate the role of tensor products in constructing quotients, and show that all semigroups of quotients of \(S\) are homomorphic images of the tensor product \(R\otimes _{\mathcal {S}(S)} S\) . By introducing the notions of generalised order and semigroup of generalised quotients, we show that if \(S\) has a semigroup of generalised quotients, then it has a greatest one. For this we determine those semilattice congruences on \(\mathcal {S}(S)\) that are restrictions of congruences on \(S\) .  相似文献   

5.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

6.
7.
Consider a multivalued formal function of the type 1 $$\begin{aligned} \varphi (s) : = \sum _{j=0}^k\,c_j(s).s^{\lambda + m_j}.(\mathrm{Log}\,s)^j, \end{aligned}$$ where \(\lambda \) is a positive rational number, \(c_j\) is in \({{\mathrm{\mathbb {C}}}}[[s]]\) and \(m_j \in \mathbb {N}\) for \(j \in [0,k-1]\) . The theme associated with such a \(\varphi \) is the “minimal filtered integral equation” satisfied by \(\varphi \) , in a sense which is made precise in this article. We study such objects and show that their isomorphism classes may be characterized by a finite set of complex numbers, when we assume the Bernstein polynomial of \(\varphi \) to be fixed. For a given \(\lambda \) , to fix the Bernstein polynomial is equivalent to fix a finite set of integers associated with the logarithm of the monodromy in the geometric situation described below. Our aim is to construct some analytic invariants, for instance in the following situation, let \(f : X \rightarrow D\) be a proper holomorphic function defined on a complex manifold \(X\) with values in a disc \(D\) . We assume that the only critical value is \(0 \in D\) and we consider this situation as a degenerating family of compact complex manifolds to a singular compact complex space \(f^{-1}(0)\) . To a smooth \((p+1)\) -form \(\omega \) on \(X\) such that \(\mathrm{d}\omega = 0 = \mathrm{d}f \wedge \omega \) and to a vanishing \(p\) -cycle \(\gamma \) chosen in the generic fiber \(f^{-1}(s_0), s_0 \in D \setminus \{0\}\) , we associated a “vanishing period” \(F_{\gamma }(s) : = \int _{\gamma _s} \omega \big /\mathrm{d}f \) which has an asymptotic expansion at \(0\) of the form \((1)\) above, when \(\gamma \) is chosen in the spectral subspace of \(H_p(f^{-1}(s_0), {{\mathrm{\mathbb {C}}}})\) for the eigenvalue \(\mathrm{e}^{2i\pi .\lambda }\) of the monodromy of \(f\) . Here \((\gamma _s)_{s \in D^*}\) is the horizontal multivalued family of \(p\) -cycles in the fibers of \(f\) obtained from the choice of \(\gamma \) . The aim of this article was to study the module generated by such a \(\varphi \) over the algebra \(\tilde{\mathcal {A}}\) , which is the \(b\) -completion of the algebra \(\mathcal {A}\) generated by the operators \(\mathrm{a} : = \times s\) and \(\mathrm{b} : = \int _{0}^{s}\) .  相似文献   

8.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

9.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

10.
Marian Nowak 《Positivity》2014,18(2):359-373
Let \(X\) be a completely regular Hausdorff space and \(C_b(X)\) be the Banach lattice of all real-valued bounded continuous functions on \(X\) , endowed with the strict topologies \(\beta _\sigma ,\) \(\beta _\tau \) and \(\beta _t\) . Let \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) \((z=\sigma ,\tau ,t)\) stand for the space of all \((\beta _z,\xi )\) -continuous linear operators from \(C_b(X)\) to a locally convex Hausdorff space \((E,\xi ),\) provided with the topology \(\mathcal{T}_s\) of simple convergence. We characterize relative \(\mathcal{T}_s\) -compactness in \(\mathcal{L}_{\beta _z,\xi }(C_b(X),E)\) in terms of the representing Baire vector measures. It is shown that if \((E,\xi )\) is sequentially complete, then the spaces \((\mathcal{L}_{\beta _z,\xi }(C_b(X),E),\mathcal{T}_s)\) are sequentially complete whenever \(z=\sigma \) ; \(z=\tau \) and \(X\) is paracompact; \(z=t\) and \(X\) is paracompact and ?ech complete. Moreover, a Dieudonné–Grothendieck type theorem for operators on \(C_b(X)\) is given.  相似文献   

11.
12.
New multi-dimensional Wiener amalgam spaces \(W_c(L_p,\ell _\infty )(\mathbb{R }^d)\) are introduced by taking the usual one-dimensional spaces coordinatewise in each dimension. The strong Hardy-Littlewood maximal function is investigated on these spaces. The pointwise convergence in Pringsheim’s sense of the \(\theta \) -summability of multi-dimensional Fourier transforms is studied. It is proved that if the Fourier transform of \(\theta \) is in a suitable Herz space, then the \(\theta \) -means \(\sigma _T^\theta f\) converge to \(f\) a.e. for all \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) . Note that \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset W_c(L_r,\ell _\infty )(\mathbb{R }^d) \supset L_r(\mathbb{R }^d)\) and \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset L_1(\log L)^{d-1}(\mathbb{R }^d)\) , where \(1 . Moreover, \(\sigma _T^\theta f(x)\) converges to \(f(x)\) at each Lebesgue point of \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) .  相似文献   

13.
In the framework of toroidal Pseudodifferential operators on the flat torus \({\mathbb {T}}^n := ({\mathbb {R}} / 2\pi {\mathbb {Z}})^n\) we begin by proving the closure under composition for the class of Weyl operators \(\mathrm {Op}^w_\hbar (b)\) with symbols \(b \in S^m (\mathbb {T}^n \times \mathbb {R}^n)\) . Subsequently, we consider \(\mathrm {Op}^w_\hbar (H)\) when \(H=\frac{1}{2} |\eta |^2 + V(x)\) where \(V \in C^\infty ({\mathbb {T}}^n)\) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schrödinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schrödinger equation to the solution of the Liouville equation on \(\mathbb {T}^n \times {\mathbb {R}}^n\) written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space \(H^{1} (\mathbb {T}^n; {\mathbb {C}})\) with phase functions in the class of Lipschitz continuous weak KAM solutions (positive and negative type) of the Hamilton–Jacobi equation \(\frac{1}{2} |P+ \nabla _x v (P,x)|^2 + V(x) = \bar{H}(P)\) for \(P \in \ell {\mathbb {Z}}^n\) with \(\ell >0\) , and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of \(P+ \nabla _x v\) .  相似文献   

14.
Consider the instationary Boussinesq equations in a smooth bounded domain \(\Omega \subseteq \mathbb {R}^3\) with initial values \(u_0 \in L^2_{\sigma }(\Omega )\) , \( \theta _0 \in L^2(\Omega )\) and gravitational force \(g\) . We call \((u,\theta )\) strong solution if \((u,\theta )\) is a weak solution and additionally Serrin’s condition \(u \in L^s(0,T; L^q(\Omega ))\) holds where \( 1 satisfy \(\frac{2}{s} + \frac{3}{q} =1\) . In this paper we show that \(\int _0^{\infty } \Vert e^{-tA} u_0 \Vert _q^s \, dt < \infty \) is necessary and sufficient for the existence of such a strong solution \((u,\theta )\) in a sufficiently small interval \([0,T[\, , 0 < T\le \infty \) . Furthermore we show that strong solutions are uniquely determined and that they are smooth if the data are smooth. The crucial point is the fact that we have required no additional integrability condition for \(\theta \) in the definition of a strong solution \((u,\theta )\) .  相似文献   

15.
In this paper, we determine all irreducible spherical functions \(\Phi \) of any \(K \) -type associated with the pair \((G,K)=(\mathrm{SO }(4),\mathrm{SO }(3))\) . This is accomplished by associating with \(\Phi \) a vector-valued function \(H=H(u)\) of a real variable \(u\) , which is analytic at \(u=0\) and whose components are solutions of two coupled systems of ordinary differential equations. By an appropriate conjugation involving Hahn polynomials, we uncouple one of the systems. Then, this is taken to an uncoupled system of hypergeometric equations, leading to a vector-valued solution \(P=P(u)\) , whose entries are Gegenbauer’s polynomials. Afterward, we identify those simultaneous solutions and use the representation theory of \(\mathrm{SO }(4)\) to characterize all irreducible spherical functions. The functions \(P=P(u)\) corresponding to the irreducible spherical functions of a fixed \(K\) -type \(\pi _\ell \) are appropriately packaged into a sequence of matrix-valued polynomials \((P_w)_{w\ge 0}\) of size \((\ell +1)\times (\ell +1)\) . Finally, we prove that \(\widetilde{P}_w={P_0}^{-1}P_w\) is a sequence of matrix orthogonal polynomials with respect to a weight matrix \(W\) . Moreover, we show that \(W\) admits a second-order symmetric hypergeometric operator \(\widetilde{D}\) and a first-order symmetric differential operator \(\widetilde{E}\) .  相似文献   

16.
For a commutative noetherian ring \(R\) , we establish a bijection between the resolving subcategories consisting of finitely generated \(R\) -modules of finite projective dimension and the compactly generated t-structures in the unbounded derived category \(\mathcal {D}(R)\) that contain \(R[1]\) in their heart. Under this bijection, the t-structures \((\mathcal U,\mathcal V)\) such that the aisle \(\mathcal U\) consists of objects with homology concentrated in degrees \(<n\) correspond to the \(n\) -cotilting classes in \({{\mathrm{Mod}\text {-}R}}\) . As a consequence of these results, we prove that the little finitistic dimension findim \(R\) of \(R\) equals an integer \(n\) if and only if the direct sum \(\bigoplus _{k=0}^n E_k(R)\) of the first \(n+1\) terms in a minimal injective coresolution \(0\rightarrow R\rightarrow E_0(R)\rightarrow E_1(R)\rightarrow \cdots \) of \(R\) is an injective cogenerator of \({{\mathrm{Mod}\text {-}R}}\) .  相似文献   

17.
Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\) . In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\) . We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\) , then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.  相似文献   

18.
To each non-square integer \(2^{2N+1}\ge 2^5\) there correspond semifields \(D\) of order of \(2^{2N+1}\) that contain \(\text{ GF}(4)\) . Hence there exist affine planes for each non-square order \(2^{2N+1}\ge 2^{5}\) that contain subaffine planes of order \(2^2\) . Moreover, there also exists semifields \(D_1\) and \(D_2\) , with \(|D_1|= |D_2| =|D|\) such that \(D_1\) is commutative and \(D_2\) is non-commutative but neither \(D_1\) nor \(D_2\) contains \(\text{ GF}(4)\) .  相似文献   

19.
Consider a general domain \(\varOmega \subseteq {\mathbb {R}}^n, n\ge 2\) , and let \(1 < q <\infty \) . Our first result is based on the estimate for the gradient \(\nabla p \in G^q(\varOmega )\) in the form \(\Vert \nabla p\Vert _q \le C \,\sup |\langle \nabla p,\nabla v\rangle _{\varOmega }|/\Vert \nabla v\Vert _{q'}\) , \(\nabla v \in G^{q'}(\varOmega ), q' = \frac{q}{q-1}\) , with some constant \(C=C(\varOmega ,q)>0\) . This estimate was introduced by Simader and Sohr (Mathematical Problems Relating to the Navier–Stokes Equations. Series on Advances in Mathematics for Applied Sciences, vol. 11, pp. 1–35. World Scientific, Singapore, 1992) for smooth bounded and exterior domains. We show for general domains that the validity of this gradient estimate in \(G^q(\varOmega )\) and in \(G^{q'}(\varOmega )\) is necessary and sufficient for the validity of the Helmholtz decomposition in \(L^q(\varOmega )\) and in \(L^{q'}(\varOmega )\) . A new aspect concerns the estimate for divergence free functions \(f_0 \in L^q_{\sigma }(\varOmega )\) in the form \(\Vert f_0\Vert _q \le C \sup |\langle f_0,w\rangle _{\varOmega }|/ \Vert w\Vert _{q'}, w\in L^{q'}_{\sigma }(\varOmega )\) , for the second part of the Helmholtz decomposition. We show again for general domains that the validity of this estimate in \(L^q_{\sigma }(\varOmega )\) and in \(L^{q'}_{\sigma }(\varOmega )\) is necessary and sufficient for the validity of the Helmholtz decomposition in \(L^q(\varOmega )\) and in \(L^{q'}(\varOmega )\) .  相似文献   

20.
For an entire function \(f:\mathbb C\mapsto \mathbb C\) and a triple \((p,\alpha , r)\in (0,\infty )\times (-\infty ,\infty )\times (0,\infty ]\) , the Gaussian integral mean of \(f\) (with respect to the area measure \(dA\) ) is defined by $$\begin{aligned} {\mathsf M}_{p,\alpha }(f,r)=\left( \,\, {\int \limits _{|z| Via deriving a maximum principle for \({\mathsf M}_{p,\alpha }(f,r)\) , we establish not only Fock–Sobolev trace inequalities associated with \({\mathsf M}_{p,p/2}(z^m f(z),\infty )\) (as \(m=0,1,2,\ldots \) ), but also convexities of \(r\mapsto \ln {\mathsf M}_{p,\alpha }(z^m,r)\) and \(r\mapsto {\mathsf M}_{2,\alpha <0}(f,r)\) in \(\ln r\) with \(0 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号