首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nonisothermal two-dimensional lumped kinetic model of reactive liquid chromatography is formulated and applied to simulate the separation of multicomponent mixtures in a fixed-bed cylindrical column operating under nonisothermal condition. The axial and radial variations of concentration and temperature as well as reversibility of the chemical reactions are incorporated in the model equations. The model comprises a system of convection-diffusion-reaction partial differential equations coupled with algebraic and differential equations. Due to the nonlinearity of adsorption and reaction kinetics, it is required to apply an accurate numerical scheme for solving the model equations. In this study, an efficient and accurate high-resolution flux-limiting finite-volume scheme is proposed to solve the model equations. A number of stoichiometrical reactions are numerically simulated to determine the level of coupling between the temperature and concentration profiles. Moreover, the effects of various critical parameters on the process performance are examined. The results obtained are beneficial for understanding reaction and separation processes inside a liquid chromatographic reactor and to improve its performance.  相似文献   

2.
We have solved numerically the nonlinear partial differential equation that links speed of sound and compression factor subjected to boundary conditions in the gaseous phase. This method has as similar accuracy as other numerical method based on an initial-values numerical integration in the low-density regime, but for higher densities, this new approach is more accurate and less sensitive to errors in both boundary conditions and speed-of-sound. The method was tested by comparing our numerical calculations against a reference equation of state in the fluid region of densities up to the critical density and temperatures between slightly above the critical temperature and four times the critical temperature. We also analysed and estimated uncertainties of derived thermodynamic properties from this method. Finally, the method was applied to argon and ethane experimental data.  相似文献   

3.
4.
Abstract

A nonlinear general rate model (GRM) of liquid chromatography is formulated to analyze the influence of temperature variations on the dynamics of multi-component mixtures in a thermally insulated liquid chromatographic reactor. The mathematical model is formed by a system of nonlinear convection–diffusion reaction partial differential equations (PDEs) coupled with nonlinear algebraic equations for reactions and isotherms. The model equations are solved numerically by applying a semi-discrete high-resolution finite volume scheme (HR-FVS). Several numerical case studies are conducted for two different types of reactions to demonstrate the influence of heat transfer on the retention time, separation, and reaction. It was found that the enthalpies of adsorption and reaction significantly influence the reactor performance. The ratio of density time heat capacity of solid and liquid phases significantly influences the magnitude and velocity of concentration and thermal waves. The results obtained could be very helpful for further developments in non-isothermal reactive chromatography and provide a deeper insight into the sensitivity of chromatographic reactor operating under non-isothermal conditions.  相似文献   

5.
This paper is concerned with singularly perturbed initial value problems for systems of ordinary differential equations. Here our emphasis will be on nonlinear phenomena and properties, particularly those with physical relevance. Since very few nonlinear systems can be solved explicitly, one must typically rely on a numerical scheme to accurately approximate the solution. However, numerical schemes do not always give accurate results, and we discuss the class of stiff differential equations, which present a more serious challenge to numerical analysts. In this paper, we derive in closed from, analytic solution of stiff nonlinear initial value problems, through iteration. The obtained sequence of iterates is based on the use of Lagrange multipliers. Moreover, the illustrative examples shows the efficiency of the method.  相似文献   

6.
In this contribution, simple methods are presented for controlling a simulated moving bed (SMB) chromatographic process with standard PI (proportional integral) controllers. The first method represents a simple and model-free inferential control scheme which was motivated from common distillation column control. The SMB unit is equipped with UV detectors. The UV signals in the four separation zones of the unit are fixed by four corresponding PI controllers calculating the ratio of liquid and solid flow in the respective separation zone. In order to be able to adjust the product purity a second, model-based control scheme is proposed. It makes use of the nonlinear wave propagation phenomena in the apparatus. The controlled chromatographic unit is automatically working with minimum solvent consumption and maximum feed throughput--without any numerical optimization calculations. This control algorithm can therefore also be applied for fast optimization of SMB processes.  相似文献   

7.
We present a hierarchical construction scheme for accurate ab initio potential energy surface generation. The scheme is based on the observation that when molecular configuration changes, the variation in the potential energy difference between different ab initio methods is much smaller than the variation for potential energy itself. This means that it is easier to numerically represent energy difference to achieve a desired accuracy. Because the computational cost for ab initio calculations increases very rapidly with the accuracy, one can gain substantial saving in computational time by constructing a high accurate potential energy surface as a sum of a low accurate surface based on extensive ab initio data points and an energy difference surface for high and low accuracy ab initio methods based on much fewer data points. The new scheme was applied to construct an accurate ground potential energy surface for the FH(2) system using the coupled-cluster method and a very large basis set. The constructed potential energy surface is found to be more accurate on describing the resonance states in the FH(2) and FHD systems than the existing surfaces.  相似文献   

8.
A computational scheme to perform accurate numerical calculations of electrostatic potentials and interaction energies for molecular systems has been developed and implemented. Molecular electron and energy densities are divided into overlapping atom-centered atomic contributions and a three-dimensional molecular remainder. The steep nuclear cusps are included in the atom-centered functions making the three-dimensional remainder smooth enough to be accurately represented with a tractable amount of grid points. The one-dimensional radial functions of the atom-centered contributions as well as the three-dimensional remainder are expanded using finite element functions. The electrostatic potential is calculated by integrating the Coulomb potential for each separate density contribution, using our tensorial finite element method for the three-dimensional remainder. We also provide algorithms to compute accurate electron-electron and electron-nuclear interactions numerically using the proposed partitioning. The methods have been tested on all-electron densities of 18 reasonable large molecules containing elements up to Zn. The accuracy of the calculated Coulomb interaction energies is in the range of 10(-3) to 10(-6) E(h) when using an equidistant grid with a step length of 0.05 a(0).  相似文献   

9.
In this paper, we have applied an accurate and efficient wavelet scheme (due to Legendre polynomial) to find the numerical solutions for a set of coupled reaction–diffusion equations. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of non linear terms appearing in the governing differential equations. The highest derivative in the differential equation is expanded into wavelet series, this approximation is then integrated while the boundary conditions are applied by using integration constants. With the help of operational matrices, the nonlinear reaction–diffusion equations are converted into a system of algebraic equations. Finally, some numerical examples to demonstrate the validity and applicability of the method have been furnished. The use of Legendre wavelets is found to be accurate, efficient, simple, and computationally attractive. This wavelet method can be used for obtaining quick solution in many chemical Engineering problems.  相似文献   

10.
To make improved treatments of electrostatic interactions in biomacromolecular simulations, two possibilities are considered. The first is the famous particle–particle and particle–mesh (PPPM) method developed by Hockney and Eastwood, and the second is a new one developed here in their spirit but by the use of the multipole expansion technique suggested by Ladd. It is then numerically found that the new PPPM method gives more accurate results for a two-particle system at small separation of particles. Preliminary numerical examination of the various computational methods for a single configuration of a model BPTI–water system containing about 24,000 particles indicates that both of the PPPM methods give far more accurate values with reasonable computational cost than do the conventional truncation methods. It is concluded the two PPPM methods are nearly comparable in overall performance for the many-particle systems, although the first method has the drawback that the accuracy in the total electrostatic energy is not high for configurations of charged particles randomly generated. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
This paper proposes a new efficient approach for obtaining approximate series solutions to fourth-order two-point boundary value problems. The proposed approach depends on constructing Green’s function and Adomian decomposition method (ADM). Unlike existing methods like ADM or modified ADM, the proposed approach avoids solving a sequence of nonlinear equations for the undetermined coefficients. In fact, the proposed method gives a direct recursive scheme for obtaining approximations of the solution with easily computable components. We also discuss the convergence and error analysis of the proposed scheme. Moreover, several numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed approach. The numerical results reveal that the proposed method is very effective and simple.  相似文献   

12.
The overreaching purpose of this study is to evaluate new approaches for determining the optimal operational and column conditions in chromatography laboratories, i.e., how best to select a packing material of proper particle size and how to determine the proper length of the column bed after selecting particle size. As model compounds, we chose two chiral drugs for preparative separation: omeprazole and etiracetam. In each case, two maximum allowed pressure drops were assumed: 80 and 200 bar. The processes were numerically optimized (mechanistic modeling) with a general rate model using a global optimization method. The numerical predictions were experimentally verified at both analytical and pilot scales. The lower allowed pressure drop represents the use of standard equipment, while the higher allowed drop represents more modern equipment. For both compounds, maximum productivity was achieved using short columns packed with small-particle size packing materials. Increasing the allowed backpressure in the separation leads to an increased productivity and reduced solvent consumption. As advanced numerical calculations might not be available in the laboratory, we also investigated a statistically based approach, i.e., the Taguchi method (empirical modeling), for finding the optimal decision variables and compared it with advanced mechanistic modeling. The Taguchi method predicted that shorter columns packed with smaller particles would be preferred over longer columns packed with larger particles. We conclude that the simpler optimization tool, i.e., the Taguchi method, can be used to obtain “good enough” preparative separations, though for accurate processes, optimization, and to determine optimal operational conditions, classical numerical optimization is still necessary.  相似文献   

13.
Abrupt phenomena in modelling real-world systems such as chemical processes indicate the importance of investigating stiff systems. However, it is difficult to get the solution of a stiff system analytically or numerically. Two such types of stiff systems describing chemical reactions were modelled in this paper. A numerical method was proposed for solving these stiff systems, which have general nonlinear terms such as exponential function. The technique of dealing with the nonlinearity was based on the Wavelet-Collocation method, which converts differential equations into a set of algebraic equations. Accurate and convergent numerical solutions to the stiff systems were obtained. We also compared the new results to those obtained by the Euler method and 4th order Runge–Kutta method.  相似文献   

14.
Computer-assisted optimization of chromatographic separations requires finding the numerical solution of the Equilibrium-Dispersive (ED) mass balance equation. Furthermore, the competitive adsorption isotherms needed for optimization are often estimated numerically using the inverse method that also solves the ED equations. This means that the accuracy of the estimated adsorption isotherm parameters explicitly depends on the numerical accuracy of the algorithm that is used to solve the ED equations. The fast and commonly used algorithm for this purpose, the Rouchon Finite Difference (RFD) algorithm, has often been reported not to be able to accurately solve the ED equations for all practical preparative experimental conditions, but its limitations has never been completely and systematically investigated. In this study, we thoroughly investigate three different algorithms used to solve the ED equations: the RFD algorithm, the Orthogonal Collocation on Finite Elements (OCFE) method and a Central Difference Method (CDM) algorithm, both for increased theoretical understanding and for real cases of industrial interest. We identified discrepancies between the conventional RFD algorithm and the more accurate OCFE and CDM algorithms for several conditions, such as low efficiency, increasing number of simulated components and components present at different concentrations. Given high enough efficiency, we experimentally demonstrate good prediction of experimental data of a quaternary separation problem using either algorithm, but better prediction using OCFE/CDM for a binary low efficiency separation problem or separations when the compounds have different efficiency. Our conclusion is to use the RFD algorithm with caution when such conditions are present and that the rule of thumb that the number of theoretical plates should be greater than 1000 for application of the RFD algorithm is underestimated in many cases.  相似文献   

15.
In this paper, we present the multistage homotopy perturbation method for finding the solution of the chemical kinetics with nonlinear reactions. We develop a general scheme for finding the analytic solution of chemical reaction networks and apply it to motivating chemical examples such as the enzyme kinetics model and the Brusselator model. We illustrate the numerical result for the models and show the accuracy of the method.  相似文献   

16.
Abstract

A two-dimensional general rate model of non-isothermal reactive column chromatography is formulated considering homogenous and heterogeneous reaction rates, slow rates of adsorption–desorption kinetics, and enthalpies of adsorption and reaction. The model is expressed by a system of six nonlinear partial differential equations (PDEs) coupled with algebraic expressions for the adsorption and reaction rates. The nonlinearity of adsorption isotherm and reaction term hinders the derivation of analytical solutions. For that reason, a flux-limiting high-resolution finite volume scheme is suggested to numerically approximate the model equations. The effects of several kinetic and thermodynamic parameters are rigorously analyzed on the reactant conversion and components separation.  相似文献   

17.
We present the implementation and demonstration of the Chebyshev pseudo-spectral method coupled with an adaptive mesh method for performing fast and highly accurate electrophoresis simulations. The Chebyshev pseudo-spectral method offers higher numerical accuracy than all other finite difference methods and is applicable for simulating all electrophoresis techniques in channels with open or closed boundaries. To improve the computational efficiency, we use a novel moving mesh scheme that clusters the grid points in the regions with poor numerical resolution. We demonstrate the application of the Chebyshev pseudo-spectral method on a moving mesh for simulating nonlinear electrophoretic processes through examples of isotachophoresis (ITP), isoelectric focusing (IEF), and electromigration-dispersion in capillary zone electrophoresis (CZE) at current densities as high as 1000 A/m. We also show the efficacy of our moving mesh method over existing methods that cluster the grid points in the regions with large concentration gradients. We have integrated the adaptive Chebyshev pseudo-spectral method in the open-source SPYCE simulator and verified its implementation with other electrophoresis simulators.  相似文献   

18.
In this paper, the numerical solution for the fractional order Fokker–Planck equation has been presented using two dimensional Haar wavelet collocation method. Two dimensional Haar wavelet method is applied to compute the numerical solution of nonlinear time- and space-fractional Fokker–Planck equation. The approximate solutions of the nonlinear time- and space-fractional Fokker–Planck equation are compared with the exact solutions as well as solutions available in open literature. The present scheme is very simple, effective and convenient for obtaining numerical solution of the time and space-fractional Fokker–Planck equation.  相似文献   

19.
A method to evaluate nonlinear centroid correlation functions is presented that is amenable to simple numerical computation. It can be implemented with the centroid molecular dynamics method for approximate quantum dynamics with no additional assumptions. Two nonlinear correlation functions are evaluated for a model potential using this scheme and compared with results from exact quantum calculations.  相似文献   

20.
We propose a coherent, strong-field approach to control the torsional modes of biphenyl derivatives, and develop a numerical scheme to simulate the torsional dynamics. By choice of the field parameters, the method can be applied either to drive the torsion angle to an arbitrary configuration or to induce free internal rotation. Transient absorption spectroscopy is suggested as a probe of torsional control and the usefulness of this approach is numerically explored. Several consequences of our ability to manipulate molecular torsional motions are considered. These include a method for the inversion of molecular chirality and an ultrafast chiral switch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号