首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
ΔG0, ΔH0 and ΔS0 protonation values of some pairs of diastereoisomeric dipeptides have been determined by potentiometry and calorimetry in aqueous solution at 25°C and I = 0.1 mol dm−3 (KNO3). On the basis of the results obtained it has been possible to assess the role played by two different non-covalent interactions, namely the electrostatic interaction and the solvophobic interaction, on the thermodynamic stereoselectivity in the proton complex formation, shown by the systems investigated.  相似文献   

2.
The solubility studies on silver salicylate at different temperatures were made to derive (a) the standard electrode potential of the silver—silver salicylate electrode, (b) the mean activity coefficient of silver salicylate, (c) the dissociation constant of salicylic acid, and (d) the standard thermodynamic quantities, ΔG0t, ΔH0t, ΔS0t, and δC0pt, for the transfer of silver salicylate from the standard state in water to the standard state in water + 10, + 20, and + 40 mass percent of dioxane. The results are discussed in terms of the preferential solvation of the ions.  相似文献   

3.
The thermodynamic data (ΔG0, ΔH0 and TΔS0) of the solvation of tetraphenylarsonium-tetraphenylborate (Ph4AsPh4B) and its neutral parts, tetraphenylgermanium (Ph4Ge) and tetraphenylmethane (Ph4C) in methanol—N,N-dimethylformamide mixed solvents are discussed.

The values of the free energy of transfer, ΔsMG0, are calculated from measurements of the solubilities of Ph4AsPh4B, Ph4Ge and Ph4C in the successive fractions of MeOH in DMF at three different temperatures (15, 25, 35°C). The values of ΔsMH0 and TΔsMS0 for the derivatives are calculated from ΔsMG0 values.

The values of ΔsMG0, ΔsMH0 and TΔsMS0 of tetraphenylarsonium and tetraphenylborate ions have also been carefully calculated. The ratios of ΔsMG0 values (ΔsMG0 = ΔG0(+)/ΔG0(−)) were found to be greater than unity. Similarly, the ratios of ΔsMH0 and TΔsMS0 for the positive and negative ions were found to be greater than unity.  相似文献   


4.
The standard potentials of silver—silver bromide and silver—silver iodide electrodes in glycerol+water mixtures containing 5, 10, 20 and 30 wt% glycerol were determined from electromotive force measurements of the cell Ag(s), AgX(s), KX(c)//KCl(c), AgCl(s), Ag(s), where X is Br or I, at seven different temperatures in the range 5–35°C. The standard potentials in each solvent are represented as a function of temperature. The standard thermodynamic functions for the electrode reactions, the primary medium effects of various solvents upon X, and the standard thermodynamic quantities for the transfer of 1 g-ion of X from water to the respective glycerol + water media are evaluated and discussed in the light of ion—solvent interactions as well as the structural changes of the solvents. From the values of the Ag/Ag+ and Ag/AgX, X electrodes, the thermodynamic solubility product constants of silver chloride, silver bromide and silver iodide have been determined in glycerol + water solvent mixtures at different temperatures.  相似文献   

5.
Thermodynamic characterisation of the adsorption process (at a low temperature) of dihydrogen on the zeolite Li-ZSM-5 was carried out by means of variable-temperature infrared spectroscopy, with the simultaneous measurement of temperature and equilibrium pressure. Adsorption renders the H–H stretching mode infrared active, at 4092 cm−1. The standard adsorption enthalpy and entropy resulted to be ΔH0=−6.5(±0.5) kJmol−1 and ΔS0=−90(±5) Jmol−1 K−1, respectively. The adsorption enthalpy is significantly larger than the liquefaction heat, and this fact renders Li-ZSM-5 a potential cryoadsorbent for hydrogen storage.  相似文献   

6.
The standard (p0 = 0.1 MPa) molar enthalpies of formation of several crystalline lithium alkoxides, ΔHf0(LiOR, cr), have been determined by reaction-solution calorimetry at 298.15 K. A linear correlation has been found between ΔHf0(LiOR, cr) and ΔHf0(ROH, 1) for R = n-alkyl, enabling the prediction of data for other lithium alkoxides. The deviations from the linear correlation observed for R =iPr and tBu were tentatively explained in terms of the electronegativities of the OR groups. The experimental data were also used to derive the lattice energies and the thermochemical radii of the anions OR. The results were compared with those derived from the enthalpies of formation of the analogous sodium alkoxides, reported in a previous publication.  相似文献   

7.
The effect of Cal-Red on the structure of human serum albumin (HSA) was studied using Resonance light scattering (RLS), Fourier transformed Infrared (FT-IR) and Circular dichroism (CD) spectroscopic methods. The RLS spectroscopic results show that the RLS intensity of HSA was significantly increased in the presence of Cal-Red. The binding parameters of HSA with Cal-Red were studied at different temperatures of 289, 299, 309 and 319 K at pH 4.1. It is indicated by the Scatchard plots that the binding constant K decreased from 4.03 × 108 to 7.59 × 107 l/mol and the maximum binding number N decreased from 215 to 152 with increasing the temperature, respectively. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction. The enthalpy change ΔH0, the free energy change ΔG0 and the entropy change ΔS0 of 289 K were calculated to be −42.75 kJ/mol, −47.56 kJ/mol and 16.66 J/mol K, respectively. The alterations of protein secondary structure in the presence of Cal-Red in aqueous solution were quantitatively calculated from FT-IR and CD spectroscopy with reductions of -helices content about 5%, β-turn from 10% to 2% and with increases of β-sheet from 38% to 51%.  相似文献   

8.
We have made calorimetric measurements of the enthalpy of dissolving solid ferrous chloride in water at 298 K and have derived ΔH° = −19.82 kcal mol−1 for the standard enthalpy of this process. This ΔH° is related by way of some thermodynamic calculations to other properties of iron.  相似文献   

9.
Esko Taskinen 《Tetrahedron》1993,49(48):11389-11394
The relative thermodynamic stabilities of ten allyl ethers (ROCH2CH=CH2) and the corresponding isomeric (Z)-propenyl ethers (where R is an alkyl group, or a methoxysubstituted alkyl group) have been determined by chemical equilibration in DMSO solution with t-BuOK as catalyst. From the variation of the equilibrium constant with temperature, the values of the thermodynamic parameters ΔGΘ, ΔHΘ and ΔSΘ of isomerization at 298.15 K were evaluated. The propenyl ethers are highly favored at equilibrium, the values of both ΔGΘ and ΔHΘ for the allyl → propenyl reaction being ca. −18 to −25 kJ mol−1. The favor of the propenyl ethers is increased by bulky alkyl substituents, and decreased by methoxy-substituted alkyl groups. In most cases the entropy contribution is negligible; however, for R = (MeO)2CH and R = (MeO)3C the values of ΔSΘ are ca. −5 J K−1 mol−1.  相似文献   

10.
The interactions between oleanolic acid and bovine serum albumin (BSA) have been studied by fluorescence, circular dichroism (CD), UV–vis absorption and Fourier transform infrared spectroscopy (FTIR) under physiological conditions. Spectroscopic analysis of the emission quenching at different temperatures has revealed that the quenching mechanism of bovine serum albumin by oleanolic acid is static quenching mechanism. The binding sites number n and binding constants K are obtained at various temperatures. The distance r between oleanolic acid and the protein is evaluated according to the theory of Forster energy transfer. The results by FTIR, CD and UV–vis absorption spectra experiment indicate that the secondary structures of protein have been perturbed in the presence of oleanolic acid. The thermodynamic parameters ΔH0, ΔG0, and ΔS0 are calculated according to van’t Hoff equation, which indicates that the hydrogen bonds and van der-waals are the intermolecular forces stabilizing the complex. Molecular modeling studies the interaction BSA with oleanolic acid.  相似文献   

11.
The radiative lifetimes of the b1Σ+ and a1Δ states have been evaluated by perturbation expansions including X3Σ, a1Δ, b1Σ+, 13,1Π, 23,1Π, 23Σ and 21Σ+ states. All wavefunctions result from large MRD CI calculations. The b—X transition is dominated by the parallel transition moment; it is found to be much stronger than the a—X transition. The calculated radiative lifetimes of τ(1Σ+)=18 ms, τ(1Δ)=2.2 s for NF and τ(1Σ+)=2.5–3.5 ms for NCl are in good accord with corresponding experimentally deduced values. The lifetime for the a1Δ state in NCl is found to be τ(1Δ)=1.1 s, ie. much longer than derived from a recent experiment. Its magnitude is consistent with the τ(b1Σ+)/τ(a1Δ) ratio of similar systems and with the decrease in lifetime from NF to NCl and is thus believed to be quite reliable. A detailed analysis of all contributions of the perturber states to the transition mechanism is made and comparison with the related data in SO, O2 and S2 is undertaken. The b-a transition probability dominated by the quadrupole transition is fairly constant in all the systems in the order of A = 0.013 (NF) - 0.0013 (S2) s−1.  相似文献   

12.
Saran L  Cavalheiro E  Neves EA 《Talanta》1995,42(12):2027-2032
The highly neutralized ethylenediaminetetraacetate (EDTA) titrant (95–99% as Y4− anion) precipitates with Ag+ cations to form the Ag4Y species, in aqueous medium, which is well characterized from conductometric titration, thermal analysis and potentiometric titration of the silver content of the solid. The precipitate dissolves in excess Y4− to form a complex, AgY3−. Equilibrium studies at 25°C and ionic strength 0.50 M (NaNO3) have shown from solubility and potentiometric measurements that the formation constant (95% confidence level) β1 = (1.93 ± 0.07) × 105 M−1 and the solubility products are KS0 = [Ag +]4[Y4−] = (9.0 ± 0.4) × 10−18 M5 and KS1 = [Ag +]3[AgY3−] = (1.74 ± 0.08) × 10−12 M4. The presence of Na+, rather than ionic strength, markedly affects the equilibrium; the data at ionic strength 0.10 M are: β1 = (1.19 ± 0.03) × 106 M−1, KS0 = (1.6 ± 0.4) × 10−19 M5 and KS1 = (1.9 ± 0.5) × 10−13 M4; at ionic strength tending to zero; β1 = (1.82 ± 0.05) × 107 M−1, KS0 = (2.6 ± 0.8) × 10−22 M5 and KS1 = (5 ± 1) × 10−15 M4. The intrinsic solubility is 2.03 mM silver (I) in 0.50 M NaNO3. Well-defined potentiometric titration curves can be taken in the range 1–2 mM with the Ag indicator electrode. Thermal analysis revealed from differential scanning calorimetry a sharp exothermic peak at 142°C; thermal gravimetry/differential thermal gravimetry has shown mass loss due to silver formation and a brown residue, a water-soluble polymeric acid (decomposition range 135–157°C), tending to pure silver at 600°C, consistent with the original Ag4Y salt.  相似文献   

13.
Anion exchange membrane has been investigated in different electrolyte solutions by chronopotentiometry to explore the influence of co-ion and counterion of the exchange group of the membrane, on the transport phenomena. Chloride, nitrate, sulfate and acetate in sodium salts were used as counterions and sodium, potassium, calcium and ammonium in chloride salts were used as co-ions. The membrane showed a potential drop (E0) in all these electrolytes when a constant current was applied across it, which remained constant for a period less than τ, called the transition time and rose gradually to a maximum (Emax) value. The parameters such as τ, E0 and Emax and the potential jump (ΔE) and τ and the inflection zone (Δt) along the time axis have been measured and compared at an applied current density (I) of 10 mA cm−2 in 10 mM solutions. The values of τ1/2/zA[A0] or τ1/2/zC[C0], with or , E0 and ΔE with or (where rA and rC are the ionic radii of counter and co-ions, respectively) have been correlated. Permselectivity (P) and transference number of the membrane with respect to each one of the above electrolytes have been evaluated and discussed.  相似文献   

14.
The e.m.f. of the galvanic cells Pt,C,Te(l),NiTeO3,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt and Pt,C,NiTeO3,Ni3TeO6,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt (where 15 YSZ=15 mass% yttria-stabilized zirconia) was measured over the ranges 833–1104 K and 624–964 K respectively, and could be represented by the least-squares expressions E(1)±1.48 (mV) = 888.72 − 0.504277 (K) and E(II) ±4.21 (mV) = 895.26 − 0.81543T (K).

After correcting for the standard state of oxygen in the air reference electrode, and by combining with the standard Gibbs energies of formation of NiO and TeO2 from the literature, the following expressions could be derived for the ΔG°f of NiTeO3 and Ni3TeO6: ΔGf°(NiTeO3) ± 2.03 (kJ mol−1) = −577.30 + 0.26692T (K) and ΔG°f(Ni3TeO6)±2.54 (kJ mol−1) = −1218.66 + 0.58837T (K).  相似文献   


15.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

16.
The effect of temperature on the extraction of FE(III) by dehydrated castor oil fatty acids (DCOFA) has been studied in the temperature range 283–313 K at 1.0M constant ionic strength (NaClO4). The temperature dependence of the conditional constant of extraction is given in the form: ln Kext=31.95 − 12800(1/T). Also, it was found that the average thermodynamic parameters, ΔH°ext, ΔG°ext, and ΔS°ext are 106.5 kJ/mole, 27.3 kJ/mole, and 0.3 kJ. mole−1.K−1, respectively. The extracted species in toluene solution were identified as FeR3.HR and Fe(OH)R2, where HR represents the fatty acid used.  相似文献   

17.
The heat capacities of NaNO3 and KNO3 were determined from 350 to 800 K by differential scanning calorimetry. Solid-solid transitions and melting were observed at 550 and 583 K for NaNO3 and 406 and 612 K for KNO3, respectively. The entropies associated with the solid-solid transitions were measured to be (8.43± 0.25) J K−1 mole−1 for NaNO3 and (13.8±0.4) J K−1 mole−1 for KNO3. At 298.15 K the values of C0P S0P, {H0(T)-H0(0)}/T and -{G0(T)-H0(0)}/T, respectively, are 91.94, 116.3, 57.73, and 58.55 J K−1 mole−1 for NaNO3 and 95.39, 133.0, 62.93, and 70.02 J K−1 mole−1 for KNO3. Values for S0T, {H0(T)-H0(0)}/T, and -{G0(T)-H0(0)}/T were calculated and tabulated from 15 to 800 K for NaNO3 and KNO3.  相似文献   

18.
Twenty-two isomers/conformers of C3H6S+√ radical cations have been identified and their heats of formation (ΔHf) at 0 and 298 K have been calculated using the Gaussian-3 (G3) method. Seven of these isomers are known and their ΔHf data are available in the literature for comparison. The least energy isomer is found to be the thioacetone radical cation (4+) with C2v symmetry. In contrast, the least energy C3H6O+√ isomer is the 1-propen-2-ol radical cation. The G3 ΔHf298 of 4+ is calculated to be 859.4 kJ mol−1, ca. 38 kJ mol−1 higher than the literature value, ≤821 kJ mol−1. For allyl mercaptan radical cation (7+), the G3 ΔHf298 is calculated to be 927.8 kJ mol−1, also not in good agreement with the experimental estimate, 956 kJ mol−1. Upon examining the experimental data and carrying out further calculations, it is shown that the G3 ΔHf298 values for 4+ and 7+ should be more reliable than the compiled values. For the five remaining cations with available experimental thermal data, the agreement between the experimental and G3 results ranges from fair to excellent.

Cation CH3CHSCH2+√ (10+) has the least energy among the eleven distonic radical cations identified. Their ΔHf298 values range from 918 to 1151 kJ mol−1. Nevertheless, only one of them, CH2=SCH2CH2+√ (12+), has been observed. Its G3 ΔHf298 value is 980.9 kJ mol−1, in fair agreement with the experimental result, 990 kJ mol−1.

A couple of reactions involving C3H6S+√ isomers CH2=SCH2CH2+√ (12+) and trimethylene sulfide radical cation (13+) have also been studied with the G3 method and the results are consistent with experimental findings.  相似文献   


19.
The formation constants for the complexes Mg2+ -, Ca2+ -, Sr2+ - and Ba2+ - succinate (succ2−) have been determined by potentiometric measurements, in aqueous solution, at different temperatures and ionic strengths. The species [M(succ)]0 and [M(succ)H]+ were found for all systems. For the stability constant the ionic strength dependence has been found, and general parameters for the relation log β = f(I) have been obtained. From the temperature dependence of stability constants ΔH values have been deduced. The procedure adopted in calculating all the thermodynamic parameters for the systems under study, where weak complexes are formed, is discussed. The stability of the complexes follows the order Mg < Ca Sr ≈ Ba.  相似文献   

20.
The Gibbs energy of formation of IrO2(s) has been measured by means of oxygen dissociation pressure measurements, and by EMF measurements using ZrO2 (+ CaO) as the solid electrolyte. In addition, high-temperature enthalpy increments of IrO2 have ben measured from 416 to 940 K using a drop calorimeter. A “third law” evaluation of the experimental results and data from literature has been made. For the enthalpy of formation of IrO2(s) the value ΔH°f (298.15 K) - −(59.60 ± 0.03) kcal mole−1 has been selected. The thermodynamic functions of IrO2(s) have been calculated in the temperature range 298–1200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号