首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
基于标准k-ε湍流模型,首先利用湍流粘度方程和剪切应力在整个边界层内恒定的假设,推导出一类耗散率表达式,并根据常用的湍动能入口剖面方程以及平均风速剖面方程,计算获得相应的耗散率方程;然后在输运方程中添加自定义源项,通过已经确定的平均速度方程、湍动能方程、耗散率方程计算得到相应输运方程的自定义源项表达式,并进行空风洞数值模拟,从而得到了一类满足平衡大气边界层的来流边界条件.通过将这种边界条件与由湍流平衡条件得到的边界条件进行比较,表明本方法获得的边界条件更适用.并且,本方法无需考虑修正壁面函数和修正湍流模型常数,因而计算更为简单,可为平衡大气边界层的研究提供一种新的思路.  相似文献   

2.
An analysis is given of the laminar boundary layer over a permeable/porous wall. The porous wall is passive in the sense that no suction or blowing velocity is imposed. To describe the flow inside and above the porous wall a continuum approach is employed based on the Volume-Averaging Method (S. Whitaker The method of volume averaging). With help of an order-of-magnitude analysis the boundary-layer equations are derived. The analysis is constrained by: (a) a low wall permeability; (b) a low Reynolds number for the flow inside the porous wall; (c) a sufficiently high Reynolds number for the freestream flow above the porous wall. Two boundary layers lying on top of each other can be distinguished: the Prandtl boundary layer above the porous wall, and the Brinkman boundary layer inside the porous wall. Based on the analytical solution for the Brinkman boundary layer in combination with the momentum transfer model of Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer 38 (1995) 2635). for the interface region, a closed set of equations is derived for the Prandtl boundary layer. For the stream function a power series expansion in the perturbation parameter is adopted, where is proportional to ratio of the Brinkman to the Prandtl boundary-layer thickness. A generalization of the Falkner–Skan equation for boundary-layer flow past a wedge is derived, in which wall permeability is incorporated. Numerical solutions of the Falkner–Skan equation for various wedge angles are presented. Up to the first order in wall permeability causes a positive streamwise velocity at the interface and inside the porous wall, but a wall-normal interface velocity is a second-order effect. Furthermore, wall permeability causes a decrease in the wall shear stress when the freestream flow accelerates, but an increase in the wall shear stress when the freestream flow decelerates. From the latter it follows that separation, as indicated by zero wall shear stress, is delayed to a larger positive pressure gradient.  相似文献   

3.
The splitting difference scheme is used to study flow separation. Flows behind a circular cylinder are computed as a model problem. In view of the nature of the flow, the variables are transformed. The boundary condition for the pressure is given from an intermediate velocity. The free-slip velocity boundary conditions on the rigid wall are given by interpolation. The multigrid algorithm is applied to the pressure iteration. We also choose better initial values for the model problem by means of the multigrid algorithm idea.  相似文献   

4.
We investigate the unsteady flow of power law fluids through porous media. We determine the pressure and velocity distributions when fluid is injected into a porous medium of infinite extend. We obtain solutions of progressive-wave type by means of a translation. We determine the necessary conditions for the existence of this type of solution regarding the prescribed pressure of injection and the initial pressure and velocity distributions in the porous medium. Similarity solutions are also obtained for the cases of a prescribed time dependent pressure of injection and a prescribed constant flow rate of injection. In the latter case the resulting ordinary differential equation is solved numerically. Point source solutions are also obtained for the case when an amount of fluid is instantaneously injected into the porous media. In all cases the rheological effects are presented and analyzed.  相似文献   

5.
The flow characteristics of an unsteady axisymmetric two-dimensional (2D) blood flow in a diseased porous arterial segment with flexible walls are investigated. The arterial walls mimic the irregular constrictions whereas the lumen containing the thrombus, cholesterol, and fatty plaques represents the porous medium. The governing equations with appropriate initial and boundary conditions are solved numerically using MAC method. The discretization is done on staggered grid with non-uniform grid size and pressure-poisson equation is solved following SOR method. The pressure and velocity corrections are made cyclically until the steady state is achieved. It is observed that for decreasing permeability, flow is highly decelerated while pressure drop and wall shear stress increases. The separation zones and re-circulation regions are found for severe stenoses. Flow separation and re-circulation diminishes for decreasing permeability of the porous medium. Comparisons are provided with published experimental and numerical results.  相似文献   

6.
Combined, forced, and free flow in a vertical circular duct filled with a porous medium is investigated according to the Darcy–Boussinesq model. The effect of viscous dissipation is taken into account. It is shown that a thermal boundary condition compatible with fully developed and axisymmetric flow is either a linearly varying wall temperature in the axial direction or, only in the case of uniform velocity profile, an axial linear-exponential wall temperature change. The case of a linearly varying wall temperature corresponds to a uniform wall heat flux and includes the uniform wall temperature as a special case. A general analytical solution procedure is performed, by expressing the seepage velocity profile as a power series with respect to the radial coordinate. It is shown that, for a fixed thermal boundary condition, i.e., for a prescribed slope of the wall temperature, and for a given flow rate, there exist two solutions of the governing balance equations provided that the flow rate is lower than a maximum value. When the maximum value is reached, the dual solutions coincide. When the flow rate is higher than its maximum, no axisymmetric solutions exist. E. Magyari is on leave from the Institute of Building Technology, ETH—Zürich.  相似文献   

7.
Low pressure gas percolation characteristic in ultra-low permeability porous media is investigated in this article through core flow experiments. The results show that the wall-slip layer covers more than 10% of the average porous channel radius on account of minimum pore size when the permeability is below 0.1 × 10?3μ m 2 order, and seepage behavior is contrasted to that in mid-high permeability pore media. When the gas pressure is not high enough, the flow regime turns into transitional flow instead of slip flow, and nonlinear relationship between the measured gas permeability and the reciprocal of average pressure exists. The gas measuring permeability experiment would be influenced by the non-linear relationship. If Klinkenberg-corrected method is applied to speculate the equivalent liquid permeability, the extrapolated value will become less or minus. Simultaneously, actual gas flow velocity at the outlet is beyond the calculated value with Klinkenberg formula. A new gas seepage model based on the general slip boundary condition is derived from the homogenization technique in this article. At last the flow model is examined to be suitable for representing the gas flow behavior in ultra-low permeability media and estimating the absolute permeability from single-point, steady-states measurements.  相似文献   

8.
A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.  相似文献   

9.
Experiments were conducted in a turbulent boundary layer near separation along a flat plate. The pressure gradient in flow direction was varied such that three significant boundary layer configurations could be maintained. The flow in the test section thus had simultaneously a region of favourable pressure gradient, a region of strong adverse pressure gradient with boundary layer separation and a region of reattached boundary layer. Specially designed fine probes facilitated the measurements of skin friction and velocity distribution very close to the wall. Bulk flow parameters such as skin friction coefficient C f, Reynold's number Reδ2 and shape factors H and G, which are significant characteristics of wall boundary layers were evaluated. The dependence of these parameters on the Reynolds number and along the test section was explored and the values were compared with other empirical and analytical formulae known in the literature.  相似文献   

10.
低渗透多孔介质渗流动边界模型的解析与数值解   总被引:1,自引:0,他引:1  
考虑启动压力梯度的低渗透多孔介质非达西渗流模型属于强非线性动边界问题, 分别利用相似变量变换方法和基于空间坐标变换的有限差分方法, 对内边界变压力情况下、考虑启动压力梯度的一维低渗透多孔介质非达西渗流动边界模型进行了精确解析与数值求解研究. 研究结果表明:该动边界模型存在唯一的精确解析解, 且所求得的精确解析解可严格验证数值解的正确性;且当启动压力梯度值趋于零时, 非达西渗流动边界模型的精确解析解将退化为达西渗流情况下的精确解析解. 由求解结果作出的非零无因次启动压力梯度下的地层压力分布曲线表现出紧支性特点, 其与达西渗流模型的有显著不同. 因此, 研究低渗透多孔介质中非稳态渗流问题时, 应该考虑动边界的影响. 研究内容完善了低渗透多孔介质的非达西渗流力学理论, 为低渗透油气藏开发的试井解释与油藏数值模拟技术提供了理论基础.   相似文献   

11.

This study examines the multiple layers in a rubble mound breakwater and their effect on reflection and dissipation of incoming ocean waves. The numerical model is developed using multi-domain boundary element method for oblique water wave trapping near a sloping wall by a multi-layered trapezoidal porous structure, which is utilized to model armour, filter and core layers while examining the hydrodynamics in different configurations. Both, the constant element and linear element approaches to boundary element method are discussed. The cases of bottom-standing porous structures as being submerged and fully extended are considered. The wave hydrodynamics over the structure is described by the reflection and dissipation coefficients along with the forces acting on the sloping wall, and is influenced by wave and structural parametrics of the system. The influence of armour layer in different configurations is highlighted for various structural and wave parameters.

  相似文献   

12.
The development of a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles is presented. The model is developed by volume averaging the equation of motion. A porous microstructure model based on a cell model is used. Numerical solution of the resulting equation is effected using a penalty Galerkin finite element method. Experimental pressure drop values for dilute solutions of carboxymethylcellulose flowing in narrow tubes packed with uniformly sized spherical particles are compared to theoretical predictions over a range of operating conditions. Overall agreement between experimental and theoretical values is within 15%. The extra pressure drop due to the presence of the wall is incorporated directly into the model through the application of the no-slip boundary condition at the container wall. The extra pressure drop reaches a maximum of about 10% of the bed pressure drop without wall effect. The wall effect increases as the ratio of tube diameter to particle diameter decreases, as the Reynolds number decreases and as the power law index increases.  相似文献   

13.
The flow over a porous laminated flat plate is investigated from a flow control perspective through experiments and computations. A square array of circular cylinders is used to model the porous lamination. We determine the velocities at the fluid–porous interface by solving the two-dimensional Navier–Stokes and the continuity equations using a staggered flow solver and using LDV in experiments. The control parameters for the porous region are porosity, \(\phi \) and Reynolds number, Re, based on the diameter of the circular cylinders used to model the porous lamination. Computations are conducted for \(0.4< \phi < 0.9\) and \(25< Re < 1000\), and the experiments are conducted for \(\phi = 0.65\) and 0.8 at \(Re \approx 391,\ 497\) and 803. The permeability of the porous lamination is observed to induce a slip velocity at the interface, effectively making it a slip wall. The slip velocity is seen to be increasing functions of \(\phi \) and Re. For higher porosities at higher Re, the slip velocity shows non-uniform and unsteady behavior and a breakdown Reynolds number is defined based on this characteristic. A map demarcating the two regimes of flow is drawn from the computational and experimental data. We observe that the boundary layer over the porous lamination is thinner than the Blasius boundary layer and the shear stress is higher at locations over the porous lamination. We note that the porous lamination helps maintain a favorable pressure gradient at the interface which delays separation. The suitable range of porosities for effective passive separation control is deduced from the results.  相似文献   

14.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

15.
Laser-Doppler velocimeter measurements of a wing/body junction flow field made within a plane to the side of the wing/wall junction and perpendicular both to a 3:2 elliptical nose—NACA 0020 tail wing, and a flat wall are presented. Reynolds number of the approach boundary layer was, Reθ = 5940, and free-stream air velocity was, Uref = 27.5 m/s. A large vortical structure residing in the outer region redirects the low-turbulence free-stream flow to the vicinity of the wing/wall junction, resulting in thin boundary layers with velocity magnitudes higher than free-stream flow. Lateral pressure gradients result in a three-dimensional separation on the uplifting side of the vortex. Additionally, a high vorticity vortical structure with opposite sense to the outer-layer vortex forms beneath the outer-layer vortex. Normal and shear stresses increase to attain values an order of magnitude larger compared to values measured in a three-dimensional boundary layer just outside the junction vortex. Bimodal histograms of the w fluctuating velocity occur under the outer-layer vortex near the wall due to the time-dependent nature of the horseshoe vortex. In such a flow the shear-stress angle (SSA) highly lags the flow-gradient angle (FGA), and the turbulence diffusion is highly altered due to presence of vortical structures.  相似文献   

16.
Laminar forced convection flow of a liquid in the fully developed region of a circular duct with isothermal wall is analyzed. The effects of viscous dissipation as well as of temperature dependent viscosity are taken into account. The coupled momentum and energy equations are solved analytically by means of a power series method. Then, reference is made to the Poiseuille model for the temperature change of viscosity. For a fixed value of the axial pressure gradient along the duct, dual solutions are found for the velocity and temperature fields. Although dual solutions correspond to the same value of the axial pressure gradient, they lead in general to different values of the average fluid velocity, of the average fluid temperature and of the wall heat flux. It is shown that, for a given fluid and for a fixed duct radius, the absolute value of the axial pressure gradient has an upper bound above which no steady laminar solution can exist.  相似文献   

17.
Propagation of saturation overshoots for two-phase flow of immiscible and incompressible fluids in porous media is analyzed using different computational methods. In particular, it is investigated under which conditions a given saturation overshoot remains stable while moving through a porous medium. Two standard formulations are employed in this investigation, a fractional flow formulation and a pressure–saturation formulation. Neumann boundary conditions for pressure are shown to emulate flux boundary conditions in homogeneous media. Gravity driven flows with Dirichlet boundary conditions for pressure that model infiltration into heterogeneous media with position-dependent permeability are found to exhibit pronounced saturation overshoots very similar to those seen in experiment.  相似文献   

18.
基于低渗透多孔介质渗透率的渐变理论,确定了能精确描述低渗透多孔介质渗流特征的非线性运动方程,并通过实验数据拟合.验证了非线性运动方程的有效性。非线性渗流速度关于压力梯度具有连续-阶导数,方便于工程计算;由此建立了低渗透多孔介质的单相非线性径向渗流数学模型,并巧妙采用高效的Douglas-Jones预估一校正有限差分方法求得了其数值解。数值结果分析表明:非线性渗流模型为介于拟线性渗流模型和达西渗流模型之间的一种中间模型或理想模型,非线性渗流模型和拟线性渗流模型均存在动边界;拟线性渗流高估了启动压力梯度的影响,使得动边界的移动速度比实际情况慢得多;非线性越强,地层压力下降的范围越小,地层压力梯度越陡峭,影响地层压力的敏感性减弱,而影响地层压力梯度的敏感性增强。  相似文献   

19.
The present paper is concerned with the interesting situation of the existence of transverse, velocity and thermal, boundary layers in the case of flow past a horizontal plate embedded in a saturated porous medium. The analysis shows that these layers are thicker than the axial boundary layers. However, the increase in the porous parameterB reduces the thickness. The expressions for the boundary layer thickness, the shear-stress at the wall and the specific heat flux are obtained and the behaviour of the above quantities whenB takes different values are discussed in detail.  相似文献   

20.
Oscillating jet actuators have been implemented and tested on a circular cylinder. Their action on the separation of turbulent boundary layers is investigated using complementary approaches. Wall pressure distribution shows that a large lift is generated, at the expense, however, of a slightly increased drag. Particle image velocimetry measurements provide the mean and fluctuating velocity fields in the near-wake. The control jet deflects the mean flux lines towards the wall, illustrating that the separation is delayed. This effect appears more and more powerful as the pulsed jet velocity increases. Phase averaging of the PIV fields shows that periodic structures are generated by the control, and how these structures modify the aerodynamic forces by entraining the external flow towards the wall. Finally, a few comparisons are made with laminar boundary layers and some general mechanisms are presented for the lift increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号