首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of sparse long-chain branching and molecular weight distribution on the melt fracture behavior of polyethylene melts was investigated. Four commercial polyethylene resins were employed for this study: a conventional low-density polyethylene, a conventional linear low-density polyethylene, a linear metallocene polyethylene, and a sparsely branched metallocene polyethylene. Rheological measurements were obtained for both shear and extensional deformations, and melt fracture experiments were carried out using a controlled rate capillary rheometer. A single capillary geometry was used to focus on the effects of material properties rather than geometric factors. For the linear polyethylenes, surface melt fracture, slip-stick fracture, and gross melt fracture were all observed. Conversely, the branched PE resins did not exhibit a slip-stick regime and the degree of gross fracture was observed to be much more severe than the linear resins. These variations can be explained by the effects that long-chain branching has on the onset of shear-thinning behavior (slip-stick fracture) and the degree of extensional strain hardening (gross melt fracture). Although there is some indication that the breadth of molecular weight distribution indirectly influences surface melt fracture, the results remain inconclusive.  相似文献   

2.
Shear viscosity, shear stress and first normal-stress difference have been investigated for glass- and vinylon-fiber filled polyethylene melts over a wide range of shear rate by means of three kinds of instruments. The influence of fiber content and fiber properties on the rheological properties is discussed. The viscosity increases with increasing aspect ratio and fiber content, and the influence of these parameters on the flow properties is evident at low shear rates. The first normalstress difference increases more rapidly with increasing glass fiber content, especially at low shear stresses. The influence of vinylon fibers on the first normal stress-difference vs. shear-stress relationship is different from that of glass fibers.  相似文献   

3.
The rheological properties of molten low-density polyethylene/metaboric acid blends were studied. It was found that the blend behavior can be rather different, depending on volume fraction of the inorganic component. Specifically, at some concentration of metaboric acid, the dynamic moduli and the Newtonian viscosity of the blends demonstrate a jump-like change. The concentration threshold depends on temperature and equals to 21.9 and 14.1 vol %, at 150 and 180 °C, respectively. In the concentration range below the threshold, the gain in the content of inorganic component results in an enhancement of the blend dynamic moduli and viscosity, without changing the general character of the rheological behavior of composition in the region of linear response. On the other hand, at higher concentrations of metaboric acid, the yield stress is observed, and the elastic modulus in the linear region of mechanical behavior becomes virtually independent of frequency. It was suggested that the rheological behavior of blends is related to a spontaneous change in their structure as well as planar molecular structure of the inorganic component.  相似文献   

4.
The thermorheological behavior of a number of linear low-density polyethylene and low-density polyethylene (LLDPE/LDPE) blends was studied with emphasis on the effects of long chain branching. A Ziegler–Natta, LLDPE (LL3001.32) was blended with four LDPEs having distinctly different molecular weights. The weight fractions of the LDPEs used in the blends were 1, 5, 10, 20, 50, and 75%. Differential scanning calorimetry (DSC) analysis has shown that all blends exhibited more than one crystal type. At high LDPE weight fractions, apart from the two distinct peaks of the individual components, a third peak appears which indicates the existence of a third phase that is created from the co-crystallization of the two components. The linear viscoelastic characterization was performed, and mastercurves at 150 °C were constructed for all blends to check miscibility. In addition, Van Gurp Palmen, zero-shear viscosity vs composition, Cole–Cole, and the weighted relaxation spectra plots were constructed to check the thermorheological behavior of all blends. In general, good agreement is found among these various methods. The elongational behavior of the blends was studied using a uniaxial extensional rheometer, the SER universal testing platform from Xpansion Instruments. The blends exhibit strain-hardening behavior at high rates of deformation even at LDPE concentrations as low as 1%, which suggests the strong effect of branching added by the LDPE component.  相似文献   

5.
An experimental study of the shrinkage effect in low density-high density polyethylene blends, high density-high density polyethylene blends and low density polyethylene-ethylene vinyl acetate copolymer blends is presented. Viscosity measurements are also included.The strain recovery is analysed as the addition of the interfacial tension effect and the elastic recoverable strain. The results are compared with those obtained for other polyolefin blends observing that in the case of compatible systems as low density-high density polyethylene and high density-high density polyethylene blends the strain recovery and the viscosity follow approximately the additive rule. In the case of more incompatible systems like polyethylene-ethylene vinyl acetate copolymer, polyethylene-polypropylene and others very large recoveries were observed. The formation of minifibres of the dispersed phase during the preparation of the samples is suggested as responsible for the obtained results.  相似文献   

6.
The mechanism of the electrorheological (ER) effect in two types of liquid crystalline polymer (LCP)/dimethylsiloxane (DMS) blends was investigated by rheological measurements and by structure observation under electric field and shear flow. The results show that the phase structures of these immiscible blends can be categorized into slipping (low viscosity) and non-slipping (high viscosity) states. In the non-slipping state, higher viscosity LCP domains connect the electrodes. In the slipping state, on the other hand, LCP domains do not connect the electrodes and the shear is mainly confined in the lower viscosity DMS domains. The ER effect (electrically induced viscosity increase) originates from the electrically induced slipping to non-slipping transition. In one of the blends, the ER effect occurs only at high shear rate, since this blend is in non-slipping state even under no field if the shear rate is low. Received: 29 April 1997 Accepted: 3 November 1997  相似文献   

7.
The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.  相似文献   

8.
Shear properties of CaCO3-filled linear low density polyethylene have been determined over a wide range of filler loading. The viscosity rises with the filler loading especially at low shear rates and a yield value appears for CaCO3-contents larger than 5%. The decrease of the die-swell ratios of the filled samples indicates a reduction of the melt elasticity.  相似文献   

9.
The rheological characterisation of a high-density polyethylene is performed by means of measurements of the storage and loss moduli, the shear viscosity and the transient uniaxial elongational viscosity, the latter being obtained with the Meissner extensional rheometer. The rheological behaviour of the polymeric material is described by means of a multi-mode Phan Thien-Tanner fluid model, the parameters of which are successively fitted on the basis of the linear and non-linear properties. By using a semi-analytical technique and the finite element method, numerical investigations are performed for the shape recovery of the sample, and the predictions are compared with their experimental counterparts. Surface tension effects are also explored. We discuss the agreement between the experiments and the simulation results. Received: 15 October 1998 Accepted: 22 December 1998  相似文献   

10.
An experimental study of the dynamic shear flow properties of polyethylene melts filled with glass fibers and vinylon fibers was carried out and comparison with the steady shear flow properties was made. The effects of loading level and the characteristics of the fibers on the rheological properties of the fiber-filled systems is discussed. The rigidity and complex viscosity of the fiber-filled systems is sensitive not only to the quantity of fibers but also to their length, distribution and properties. The Cox-Merz empirical law for complex viscosity and steady shear viscosity, and Roscoe's empirical relation for estimating the normal-stress coefficients are both able to be applied to pure polymer melts but not to fiber-filled systems.  相似文献   

11.
 This contribution presents a survey on the influence of long-chain branching on the linear viscoelastic properties zero shear-rate viscosity and steady-state recoverable compliance of polyethylene melts. The materials chosen are linear and slightly long-chain branched metallocene-catalyzed polyethylenes of narrow molecular mass distribution as well as linear and highly long-chain branched polyethylenes of broad molecular mass distribution. The linear viscoelastic flow properties are determined in shear creep and recovery experiments by means of a magnetic bearing torsional creep apparatus. The analysis of the molecular structure of the polyethylenes is performed by a coupled size exclusion chromatography and multi-angle laser light scattering device. Polyethylenes with a slight degree of long-chain branching exhibit a surprisingly high zero shear-rate viscosity in comparison to linear polyethylenes whereas the highly branched polyethylenes have a much lower viscosity compared to linear samples. Slightly branched polyethylenes have got a higher steady-state compliance in comparison to linear products of similar polydispersity, whereas the highly branched polyethylenes of broad molecular mass distribution exhibit a surprisingly low elasticity in comparison to linear polyethylenes of broad molecular mass distribution. In addition sparse levels of long-chain branching cause a different time dependence in comparison to linear polyethylenes. The experimental findings are interpreted by comparison with rheological results from literature on model branched polymers of different molecular topography and chemical composition. Received: 12 July 2001 Accepted: 30 October 2001  相似文献   

12.
In this paper, the modified constrained volume model, which describes the evolution of anisotropy of immiscible polymer blends, composed of Newtonian components, was examined during shearing motion (steady and oscillatory) at various viscosity ratio values. We found that the linear correction to the rate of deformation tensor causes the droplet to change its volume at viscosity ratio values lower than unity, and to cause premature tumbling at viscosity ratio values larger than unity, in a case where retraction, breakup, and coalescence modules of the model were turned off. The use of Eshelby tensor, together with a closure to relate anisotropy to the Eshelby concentration tensor, mostly solved the problem. The model’s predictions are then shown at various capillary number values and at various viscosity ratio values. Comparison of model predictions to single droplet data at nonunity viscosity ratio value showed good agreement. Finally, model predictions of first normal stress difference during startup of steady shear are compared to experimental rheological results for immiscible polymer blends that are available in literature. Good predictions can be achieved by the introduction of a new switch function that controls the retraction and breakup modules. The model’s predictions at large amplitude oscillatory shear were examined. It was found that linear corrections to the velocity gradient tensor can be used for strains up to 100 %. For larger strain values, the Eshelby concentration tensor must be used.  相似文献   

13.
A slit die viscometer has been used in conjunction with a co-rotating twin screw extruder to study the rheological behaviour of maize grits, potato powder and low density polyethylene, as a function of feed rate, screw speed and temperature. The shear viscosity of both maize and potato decreased with increasing feed rate. Increasing the temperature or screw speed at any given feed rate also reduced the viscosity. The ultrasonic velocity through the material has also been shown to be sensitive to the extruder operating conditions. Overall, the ultrasonic velocity decreased as screw speed and temperature increased and feed rate decreased.  相似文献   

14.
Rheological techniques, size-exclusion chromatography, and molecular spectroscopy are the most widely used tools for describing polymer molecular structure in polyolefins. The detection of long-chain branching, and to some extent, its quantification, have been based on quantifying the deviation of polyethylene??s (PE) rheological behavior from that of a linear reference. Although metallocene-based PE has been extensively studied, linear polydisperse originating from Ziegler or Chromium-based catalysts are not often thoroughly considered, despite their high industrial importance. Within this work, we study the linear and non-linear rheology of a set of polydisperse PEs, for which the topological linearity is confirmed by GPC-MALLS measurements. Thus, we can safely quantify the effect of broad molecular weight distribution, high and ultra-high molecular weight fractions on rheological quantities and model parameters. Specifically, the zero-shear viscosity, ?? 0 vs. M w, relaxation spectra, phase lag vs. the complex modulus plot (van Gurp?CPalmen method) were applied and significant deviations from the ??rheologically linear?? behavior were observed, attributed only to M w, M z and polydispersity. Since the elongational viscosity was typical of linear PE, large-amplitude oscillatory shear and FT-Rheology were applied to quantify the non-linear rheological behavior. The latter was described by a single parameter, $Q=I_{3/1}/\gamma_0^2$ , which for linear polydisperse PE was correlated to the high molecular weight fraction and was constant over a broad range of applied Deborah numbers for the respective excitation frequencies. Since we need to correlate structural features such as broad MWD and HMW to polymer performance under processing conditions, we have to extend the analysis of linear rheological parameters, such as zero-shear viscosity, to non-linear parameters, e.g., the Q parameter quantified and used here.  相似文献   

15.
In order to find the relationships between processibility and properties of the polypropylene/ethylene vinyl alcohol copolymer (PP/EVOH) blends, their rheological behavior, in both shear and extensional flows, was studied and related with mechanical, morphological, and barrier properties of the materials. The nonlinear viscoelastic behavior in shear was also analyzed. The data showed that the rheological parameters (viscosity, loss modulus, storage modulus, extensional viscosity, and Trouton ratio) improved with the addition of low quantities of sodium ionomer copolymer used as compatibilizer. At the same time, the overall properties of the PP/EVOH blends improved as a result of the compatibilizer addition. The morphological analysis showed that the changes in the material properties were related with a more uniform distribution of EVOH particles in the PP matrix. The rheological data obtained allowed us to choose the optimal range for EVOH and ionomer contents, especially in terms of combining good processing characteristics with the good final properties.  相似文献   

16.
Processing at the highest possible throughput rates is essential from an economical point of view. However, various flow instabilities and extrudate distortions like sharkskin, stick slip, and gross melt fracture (GMF) may limit the production rate of high-quality products. Predicting the process conditions leading to the occurrence of rheological instabilities is the key for improving product quality, process control, and optimization. Large-amplitude oscillatory shear (LAOS) and FT-rheology were used to quantify the non-linear rheological behavior and instabilities of a series of well-characterized commercial polyethylene (PE). From the latter, we derive the critical non-linearity parameter, F 0,c, which corresponds to the normalized intensity of the third harmonic at the critical strain amplitude, γ 0,C (defined by the appearance of the second harmonic), normalized by γ 0,C . The F 0,c is correlated with the high molecular mass fraction of the polymers and with the Deborah numbers. Linear rheological parameters and molecular structures were related to F 0,c. An experimental correlation between F 0,c of commercial PE melts and pressure fluctuations associated with flow instabilities (sharkskin) was established both for capillary rheometry and extrusion.  相似文献   

17.
Flows involving different types of chain branches have been modelled as functions of the uniaxial elongation using the recently generated constitutive model and molecular dynamics for linear viscoelasticity of polymers. Previously control theory was applied to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD) by melt calibration. Temperature dependences and dimensions of statistical chain tubes were also modelled. The present study investigated the elongational viscosity. We introduced earlier the rheologically effective distribution (RED), which relates very accurately and linearly to the viscoelastic properties. The newly introduced effective strain-hardening distribution (REDH) is related to long-chain branching. This REDH is converted to real long-chain branching distribution by melt calibration and a simple relation formula. The presented procedure is very effective at characterizing long-chain branches, and also provides information on their structure and distribution. Accurate simulations of the elongational viscosities of low-density polyethylene, linear low-density polyethylene and polypropylene, and new types of MWDs are presented. Models are presented for strain-hardening that includes the monotonic increase and overshoot effects. Since the correct behaviour at large Hencky strains is still unclear, these theoretical models may aid further research and measurements.  相似文献   

18.
Interfacial reactions have dominant effects on the morphological and rheological properties of compatibilized polymer blends. This work aims to investigate the effect of epoxy resin, as a coupling agent, on the interface properties and subsequent influences on the morphological and rheological properties of polyethylene terephthalate/polyamide66 (PET/PA66) blend. PET/PA66 70/30 blends with different amount of bisphenol A epoxy resin (0, 1, 3, and 5 wt.%) were prepared. SEM micrographs show reduction in droplet size with increasing epoxy resin concentration, confirming the reactive compatibilizing effect of the epoxy resin. Reactions at the interface of the PET-EP-PA66 blend are confirmed by FTIR spectra. Shear viscosity results demonstrates that adding epoxy resin could suppress the interfacial slip at the blend interphase. Obtained results from storage modulus (G′) curves show the presence of one plateau for the blends at low frequency region; nevertheless, relaxation spectra indicate the presence of two more relaxation mechanisms than precursors which are related to the shape relaxation of droplets and the interface relaxation. The presence of the interface relaxation time in the blend without epoxy resin can prove the presence of reactions between two condensation polymers; however, adding the epoxy resin results in reducing both relaxation time and interfacial tension and increasing interfacial shear modulus. These observations indicate that the epoxy resin has been successful to boost the reactions at the interface between two polymers. Fitting the obtained experimental data using Palierne model indicates that the general Palierne model could describe rheological properties of the blends very well.  相似文献   

19.
We report experimental data for a linear low density grade of polyethylene at elevated temperatures using a newly designed Multi-Pass Rheometer. This rheometer is capable of measuring oscillatory viscoelastic data and steady shear capillary measurements on the same test fluid within an enclosed environment. Data presented in this paper show that at low pressures there is reasonable self-consistency between the Multi-Pass data and separate oscillatory data obtained by using a Rheometrics Mechanical Spectrometer and steady shear data obtained from a Rosand capillary rheometer. In addition, we report experimental data on the pressure dependence for both viscoelastic and steady shear data over the range of 1–230 bar. The steady shear results appear to be consistent with previously published data. The apparent viscosity and the viscoelastic data both show a linear increase of about 20% over the pressure range tested.Dedicated to Prof. Dr. J. Meissner on the occasion of his retirement from the chair of Polymer Physics at the Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland  相似文献   

20.
The rheological and structural properties of perfluoropolyether (PFPE) lubricant films including viscosity, shear stress, and birefringence were measured at relatively low to extremely high shear rates using a rotational optical rheometer. The viscosity of various films with different thicknesses exhibit Newtonian behavior up to a shear rate 1 × 104 s−1, with a transition to shear-thinning behavior obvious at higher shear rates. Birefringence of these films was also measured for the first time, and these results indicate chain alignment with shear in the shear-thinning regime. The shear rate at which alignment occurs is similar to that of the onset of shear thinning. This correlation between chain alignment and shear thinning provides direct evidence that the ability of PFPEs to lubricate hard drives at high shear rates is a direct consequence of the ability of the applied shear field to align the molecules on a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号