首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daylight visible fluorescent dye (10% v/v) mixed with water was aerially applied on mature field cotton with electrostatic and rotary atomizer nozzles. The spray rates for the electrostatic and rotary atomizer nozzles were 9.4 and 28 L/ha, respectively. Images of spray droplets on cotton leaves were digitally analyzed with ImageJ software. Charged spray cloud increased deposition nearly two to three times on adaxial and abaxial surfaces, respectively, of top canopy leaves compared to uncharged spray. Canopy penetration of the spray into the lower layers of the plant foliage was unaffected by spray application method.  相似文献   

2.
《Solid State Ionics》2006,177(17-18):1443-1449
Cubic and tetragonal Y2O3-doped ZrO2 thin films were deposited with a dense surface morphology by electrostatic spray deposition. Four dependent process parameters – substrate temperature, precursor solution flow rate, nozzle to substrate distance and the deposition time – have been used to control the process. Temperature dependent Raman spectroscopy and X-ray diffraction were performed in order to investigate the crystallization behavior and structural properties.  相似文献   

3.
《Solid State Ionics》2006,177(17-18):1451-1460
The present study is focused on the preparation of zirconia-based coatings obtained by Electrostatic Spray Deposition (ESD). Microstructural properties of ESD coatings were optimised versus the composition of the precursor solution and the substrate nature. This chemical approach includes the influence of zirconia precursors, yttrium chloride, solvent mixtures, zirconia precursor concentration, additives and substrate nature in order to optimally tune the microstructure of the coating. A smooth, dense and homogeneous thin layer was successfully deposited.  相似文献   

4.
Electrostatic spray deposition was applied to prepare nanoporous lanthanum strontium manganite (LSM) films with high specific surface area (37.34 m2/g) for the cathode application in solid oxide fuel cell (SOFC). The electrochemical characteristics were investigated at a temperature range from 546 to 777 °C and oxygen partial pressure from 0.01 to 1.0 atm. The diffusion of atomic oxygen and oxygen ion transfer from three-phase boundary to the YSZ electrolyte were found to be the rate-determining steps for oxygen reduction reaction on LSM cathode. The polarization resistance of the LSM prepared using electrostatic spray deposition decreased from 15 to 1.2 Ωcm2 with increasing temperature from 546 to 777 °C and the activation energy was 0.81 eV. It was demonstrated that the ESD method offers a promising approach for the preparation of electrochemically active nanoporous layers, particularly applicable for solid oxide fuel cells.  相似文献   

5.
In this paper results of investigations are described aiming to numerically simulate the electrostatic powder coating process using an extended commercial computational fluid dynamics (CFD) code. The fully three-dimensional turbulent flow was calculated. Based on the Lagrangian approach the trajectories of the powder particles were modelled considering electric and aerodynamic forces. In the calculations of the particle propagation both the particle size distribution and the particle charge distribution obtained through experiments have been applied. The model accounts for the space charge effect of the charged particles and the turbulence dispersion on the particle trajectories. It was found that the space charge plays an important role for the final spray pattern shape, also increasing the transfer efficiency. The numerical results, such as velocity profiles, static and dynamic film thickness on the target were in good agreement with experiment.  相似文献   

6.
A new electrode material such as Nickel (200/201 forged bar) is used for spray charging. Comparative study has been made using different materials electrode viz. Nickel, Copper, Stainless Steel, Brass, and Aluminum; electrodes were ring shape with same inner diameter 15.0 mm and outer diameter of 22.0 mm of thickness 3.5 mm. The experiments were conducted in air atmosphere at ambient conditions (T = 20 ± 2 °C, RH = 46 ± 3%), with an air feed rate of 24.6 l/min, liquid feed rate 90.0 ml/min and applied voltage ranging from 0 to +3.0 kV. The results of applied induction electrification process were characterized by a charge-to-mass factor as a function of electrode material.  相似文献   

7.
ZnO:In films are successfully prepared by using the electrostatic spray deposition technique. X-ray diffraction indicates that the ZnO:In films have a polycrystalline hexagonal wurtzite structure with lattice parameters a=3.267 Å and c=5.209 Å. Photoluminescence properties of the films are investigated in the temperature range of 11.6-300 K, showing strong luminescence in the whole range of temperature. The temperature dependence of the photoluminescence are carried out with full profile fitting of spectra, which clearly shows that the ultraviolet (UV) emission in In-doped ZnO films at low temperature are attributed to emission of a neutral donor-bound exciton (D°X) and recombination of donor-acceptor pairs (DAP), while the UV emission at room temperature originates from radiative transition of an electron bound on a donor to the valence band.  相似文献   

8.
《Journal of Electrostatics》2006,64(3-4):234-246
Electrostatic spray (E-spray) coating is widely used for coating conductive substrates. The combination of a high-velocity shaping air, an imposed electric field and charged droplets, leads to higher transfer efficiency than conventional spray coating. In this paper, a mathematical model of droplet transport in E-spray is presented which enables simulating the coating deposition rate profile. A dilute spray assumption (no particle–particle interactions) allows modeling single-droplet trajectories resulting from a balance of electrostatic force, drag and inertia. Atomization of liquid droplets is not modeled explicitly—rather an empirical correlation is used for the mean droplet size while individual droplet sizes and starting locations are determined using random distributions. Strong coupling requires the electrostatic field and droplet trajectories be determined iteratively by successive substitution with relaxation. The influences of bell-cup voltage and atomization constant on the coating deposition rate profile, mass transfer efficiency and droplet trajectories are also shown. Using individually predicted droplet trajectories and impact locations, a static coating deposition rate profiles is determined. For the parametric values considered in this paper, the predicted spray is a cone hollow with no deposition in the center, a heavy ring near the center, and a tapering of thickness toward the outer edge.  相似文献   

9.
Tin oxide (SnO2) thin films were deposited by electrostatic spray deposition (ESD). The structural, optical and electrical properties of the films for different solvents were studied. The morphology of the deposited thin films was investigated by scanning electron microscopy. The optical transmission spectra of the films showed 66–75% transmittance in the visible region of spectrum. The electrical resistivity of thin films deposited using the different solvents ranged 1.08 × 10?3–1.34 × 10?3 Ω-cm. Overall, EG and PG were good solvents for depositing SnO2 thin films by the ESD technique with stable cone jet.  相似文献   

10.
This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose–response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.  相似文献   

11.
Tin oxide (SnO2) thin films for gas sensing applications were prepared using electrostatic spray deposition method under optimum deposition conditions. It is shown in the paper that desired film morphology can be obtained by controlling different spray parameters (liquid properties, applied voltage, nozzle-substrate distance and substrate temperature). The spray parameters were optimized with respect to droplet diameter and applied voltage. An empirical relationship between critical voltage and different spray parameters was established for optimization. The morphology of the films prepared using these optimized spray parameters were investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).  相似文献   

12.
Electrostatic discharges obtained upon the irradiation of K-208 glass with 40-keV electrons at a flux density φ of 1010 to 2 × 1011 cm–2 s–1 are studied. The residual pressure p v in the vacuum chamber is varied from 5 × 10–5 to 5 × 10–3 Pa. Structural changes in the sample surfaces are studied by atomic-force microscopy. Depending on the pressure level, two types of discharges are observed in experiments at 3 × 1010 ≤ φ ≤ 1.2 × 1011 cm–2 s–1: a microprojection at the glass–ionized-residual-atmosphere surface and a discharge which develops along the irradiated surface. It is found that at 5 × 10–5p v ≤ 3 × 10–4 Pa and 8 × 1010 ≤ φ ≤ 1011 cm–2 s–1, discharges of the first type appear at the beginning of exposure; that is, an increase in microprojections is observed. Further, surface discharges propagate through these microprojections. At 10–3p v ≤ 5 × 10–3 Pa and 1010 ≤ φ ≤ 5 × 1010 cm–2 s–1, on the contrary, discharges of the second type are realized at the beginning. These discharges result in the appearance of channels with inhomogeneities on the glass, at which subsequently discharges of the first type occur. It is determined by calculations that in the region adjacent to the exposed glass surface, secondary electrons accelerated in a field of charge accumulated in the glass make the main contribution to the ionization of gases.  相似文献   

13.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP.  相似文献   

14.
15.
It is shown that there exists a new series of resonances due to the interaction between a whistler propagating along an ambient magnetic field and the particles which are trapped in a large amplitude electrostatic wave. These resonances seem to produce sideband growths of the whistler.  相似文献   

16.
Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.  相似文献   

17.
In this paper, the electrostatic detection equation of moving hand is proposed based on Gauss’ Law and electric field superposition theorem, and experimental results match the theoretical calculation well, which confirms that we can monitor hand motion under non-contact condition effectively. Then we develop an effective non-contact, passive and low cost technique using induced electrostatic signals measurement for determination of the velocity and direction of human hand motion based on the variation tendency in the electric field strength between moving hand and electrodes, which doesn’t require complex data processing even in an open unshielded environment close to sources of power line interference and resistance noise generated by computer and electric iron respectively. Experimental results confirm that hand gesture can be recognized by non-contact electrostatic detection by adopting multiple electrodes array.  相似文献   

18.
19.
Nonthermal plasma (an ionized gas) is emerging as a novel tool for the treatment of living tissues for biological and medical purposes. In this study we describe the effects of a nonthermal air jet plasma on the T98G brain cancer cell line. The results of this study reveal that the jet plasma inhibits brain cancer cell growth efficiently with the loss of clongenicity in the cells. The main goal of this study is to induce cell death in T98G cancer cells by the toxic effect of jet plasma.  相似文献   

20.
The electrostatic interaction of two spherical macroparticles in a plasma has been considered. Primary attention has been focused on investigating the electrostatic interaction at short distances where polarization effects of the surface charge of finite-size macroparticles begin to play a dominant role. The first part of this study is devoted to the interaction of a point charge with a charged conducting sphere in an equilibrium plasma. It has been shown that the presence of a plasma in the system leads to a decrease in the potential barrier when two like-charged macroparticles approach each other and that this decrease proves to be the most significant in the case where the macroparticle radius is comparable to the Debye screening length. The second part of this study is concerned with the interaction of two conducting spheres in the bispherical system of the coordinates under the assumption that the charges of the conducting spheres are constant and under the assumption that the surface potentials of the spheres are constant. The latter case is closer to the physics of electrostatic interaction of two macroparticles in a plasma medium where the electrostatic potential of their surface is determined by the floating potential of the plasma. It has been demonstrated that the interaction potentials in these two cases are substantially different from each other and that, at constant macroparticle charges, the energy of the electrostatic field is an interaction potential, but, in the case of macroparticles with constant surface potentials, which are independent of the interparticle distance, the energy of the electrostatic field is not an interaction potential. In the latter case, account must be taken of the work done by external sources on the macroparticle potentials to maintain them constant. The form of the interaction potential has been established in this case from the analysis of the interaction force in terms of the Maxwell tension tensor. In the third part of this study, the interaction of two macroparticles has been considered in the spherical system of coordinates and analytical expressions for the interaction potentials have been derived for both the case of constant macroparticle charges and the case of constant surface potentials of the macroparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号