首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fuzzy set theory offers a bridge between the symbolic and numerical processing, allowing managing qualitative concepts useful in the decision-making process related to the seismic risk management and, in general, to the disaster risk management. Its use in the seismic risk evaluation is necessary in the cases where the data required to apply a conventional method of assessing risk are not available or are insufficient. One possible solution, considered in this article, is to replace the missing information by expert opinions and to process the resulting qualitative variables and linguistic qualifications instead of numerical values. This process is based on the fuzzy set theory. In order to achieve an effective management, the risk must be defined as the potential physical, economic, social and environmental consequences which occur due to hazards in a given period of time. From this holistic perspective and using the fuzzy set theory, the proposed numerical method calculates a level of the physical risk and level of the aggravating conditions related to social fragility and to the lack of resilience, to determine a total risk level. In the article are included two examples of application of the proposed method and the obtained results are compared with those corresponding to a conventional method of holistic evaluation.  相似文献   

2.
Dam bottom are key elements to control the water surface elevation below the spillway crest level. As a consequence, they are essential in reservoir management, and play a vital role in dam safety.The convenience of installing an aeration system in dam bottom outlets is well known nowadays. Otherwise, damages due to cavitation and vibration are frequently serious, as could be observed in several dams built in the beginning of the 20th century.The intrinsic features of the phenomenon make it hard to analyze either in situ or in full scaled experimental facilities. As a consequence, most of the previous studies have been carried out in small-scale physical models. The results of these works have been used to develop empirical formulas which provide an estimation of the maximum air demand of the aeration system.The progress in the development of numerical methods allows addressing this problem using numerical modeling. The Particle Finite Element Method (PFEM) had been previously applied and validated for the analysis of the performance of other hydraulic structures. In this work, it has been used to simulate air-water interaction in free-flowing gated conduits. The objective is to avoid the scale effects of physical modeling and to study in detail the key parameters. The results clarify the behaviour of the involved fluids (air and water) and provide information about the influence of the main variables that affect their circulation.  相似文献   

3.
In this work we use the Unusual Stabilized Finite Element Method (USFEM) associated to Rothe's method for solving the redistancing problem in the Level Set Method. Rothe's method is used first for advancing the solution in (pseudo)time and USFEM for solving the resulting steady advective–reaction problem in each time step. Several 2D problems are solved and results compared with SUPG scheme supplemented with a nonlinear discontinuity–capturing operator.  相似文献   

4.
5.
The motivation of this work is the modeling of the hardening precipitate and hardness evolutions of fully hardened heat treatable aluminium alloys during friction stir welding (FSW) and/or heat treatment processes. The model used is based on the kinetics of dissolution of precipitates model for hardened aluminium alloys given by Myhr and Grong (1991). This model contains a single independent variable, the time, and a single state variable, the volume fraction of hardening precipitates. A key point of this model is the identification of the effective activation energy for precipitates dissolution and the master curve defining the model, which was given by a look-up table. The goal of this work is to find an estimation of the effective activation energy and to model the dissolution rate of hardening precipitate in aluminium alloys using neural networks, avoiding the use of look-up tables. For this purpose a new and more convenient parametrization of the master curve is defined, a neural networks class is proposed, an objective functional is defined and a variational problem including independent parameters is solved. The novel methodology has been applied to different aluminium alloys, including the AA 6005A T6, AA 7449 T79 and AA 2198 T8. Experimental tests have been carried out for those aluminium alloys in order to get the HV1 hardness after isothermal heat treatments at different temperatures and for different treatment time durations. The effective activation energy for hardening precipitates dissolution and the master curve of the model have been obtained, using different network architectures, for the aluminium alloys considered in this work.  相似文献   

6.
The possibilities of computational methods for assessing the response of cable supported bridges under wind action are considered in this work. The main objective is to study the possibilities of substituting wind tunnel campaigns by computer based analyses, particularly at the early design stage. The preliminary proposed design for a continuous cable-stayed bridge with two main spans of 650 m and a single box girder deck has been considered as a case study. The force coefficients of the deck cross-section have been computed and the unsteady response associated to vortex-shedding has been simulated using CFD commercial software. Furthermore, an in-house piece of software has been employed to obtain the response for flutter and buffeting phenomena adopting the hybrid approach; with that purpose the experimental flutter functions of a similar box girder deck were adopted. The computational results have been validated by comparison with similar experimental results published by other researchers. It has been verified that the set of adopted methods offers reliable results with moderate costs; therefore, the proposed approach is very suitable at the early design stage of long span bridges or at conceptual design works.  相似文献   

7.
Optimum design of structures has been traditionally focused on the analysis of shape and dimensions optimization problems. However, more recently a new discipline has emerged: the topology optimization of the structures. This discipline states innovative models that allow to obtain optimal solutions without a previous definition of the type of structure being considered. These formulations obtain the optimal topology and the optimal shape and size of the resulting elements. The most usual formulations of the topology optimization problem try to obtain the structure of maximum stiffness. These approaches maximize the stiffness for a given amount of material to be used. These formulations have been widely analyzed and applied in engineering but they present considerable drawbacks from a numerical and from a practical point of view. In this paper the author propose a different formulation, as an alternative to maximum stiffness approaches, that minimizes the weight and includes stress constraints. The advantages of this kind of formulations are crucial since the cost of the structure is minimized, which is the most frequent objective in engineering, and they guarantee the structural feasibility since stresses are constrained. In addition, this approach allows to avoid some of the drawbacks and numerical instabilities related to maximum stiffness approaches. Finally, some practical examples have been solved in order to verify the validity of the results obtained and the advantages of the proposed formulation.  相似文献   

8.
The fuzzy sets theory and the artificial neural networks are computational intelligence tools which are nowadays widely used in earthquake engineering. This paper develops a method and a computer program which use these computational intelligence tools in order to support the damage and safety evaluation of buildings after strong earthquakes. The model uses an artificial neural network with three layers and a Kohonen learning algorithm; it also uses fuzzy sets in order to manage subjective information such as linguistic qualification of the damage levels in buildings and a fuzzy rule base to support the decision making process. All these techniques are incorporated in the developed computer program. The input data is the subjective and incomplete information about the building state obtained by possibly non experienced evaluators in the field of the seismic performance of buildings. The proposed method is implemented in a tool especially useful in the emergency response phase, when it supports the decision making regarding the building habitability and reparability. In order to show its effectiveness, two examples are included for two different types of buildings.  相似文献   

9.
We present a novel fully explicit time integration method that remains stable for large time steps, requires neither matrix inversions nor solving a system of equations and therefore allows for nearly effort-less parallelization. In this first paper the proposed approach is applied to solve conduction heat transfer problems, showing that it is stable for any time step as is the case with implicit methods but with a much lower computation time.  相似文献   

10.
Currently, many structures existing in seismic areas are highly vulnerable because they have been built without the use of seismic design codes or by using outdated codes. Often, methods for assessing the vulnerability of the structures do not take into account that their seismic behavior is dynamic and highly nonlinear and, moreover, that the structural characteristics and action have large uncertainties. This article aims to assess the vulnerability of structures taking into account that the mechanical properties of materials and the seismic action are random variables, by using advanced techniques based on the Monte Carlo method and on the nonlinear stochastic dynamics. The results obtained with these techniques are compared with those corresponding to a standard vulnerability assessment, based on deterministic models, in order to highlight the differences between both approaches. The main conclusion of this work is the need to address the vulnerability assessment problem from a probabilistic perspective which, combined with advanced nonlinear static and dynamic structural analysis techniques, provides a powerful tool giving information impossible to be captured by means of deterministic models. Finally, detailed results obtained for a building with waffle slabs, which is a structural typology widely used in Spain, are included and discussed.  相似文献   

11.
The recent requirements of Spanish regulations and directives, on their turn based on European directives, have led to the development of a new two dimensional open channel flow modelling tool. The tool, named Iber, combines a hydrodynamic module, a turbulence module and a sediment transport module, and is based in the finite volume method to solve the involved equations. The simulation code has been integrated in a pre-process and post-process interface based on GiD software, developed by CIMNE. The result is a flow and sediment modelling system for rivers and estuaries that uses advanced numerical schemes, robust and stable, which are especially suitable for discontinuous flows taking place in torrential and hydrologically irregular rivers.  相似文献   

12.
A discussion is proposed on the paper “Evaluación numérica del efecto del espesor de la placa de contacto en la acción de palanca en conexión de acero tipo T” by L.M. Bezerra, C.S. de Freitas, W.T. Matias and J.E. Carmona. The topics to be discussed are the definition of the T-stub model, the bibliographic references used in the work and the finite element analysis assumptions adopted in the modeling of the components.  相似文献   

13.
This paper presents a new procedure to deal with the delamination problem found in laminated composites, based in a continuum mechanics formulation. The procedure proposed obtains the composite constitutive performance with the Serial/Parallel mixing theory, developed by F. Rastellini. This theory characterizes composite materials by coupling the constitutive behaviour of the composite components, imposing an iso–strain relation among the components in the fibre (or parallel) direction and an iso-stress relation in the remaining directions (serial directions). The proposed procedure uses a damage formulation to characterize the constitutive behaviour of matrix component in order to obtain the stress-strain performance of this material.With these two formulations, the delamination phenomenon is characterized naturally by the numerical simulation, being unnecessary the definition of special elements or computationally expensive techniques like the definition of contact elements or mesh separation. Matrix failure, as a result of the stress state found in it, leads to a reduction of the stiffness and strength capacity of the composite in its serial directions, among them, the shear component. This stiffness reduction provides a composite performance equivalent to what is found in a delaminated material.To prove the ability of the formulation proposed to solve delamination problems, the End Notch Failure test is numerically simulated and the results obtained are compared with experimental ones. The agreement found in the results with both simulations, numerical and experimental, validate the proposed methodology to solve the delamination problem.  相似文献   

14.
This paper presents an analytical solution for the steady-state response of a homogeneous three-dimensional half-space subject to a time-harmonic point load. This expresion is of great importance in the formulation of three-dimensional elastodynamic problems in a half-space by means of boundary element methods which can be employed as a Fundamental Solution. The expressions are validated comparing the results with those obtained with the boundary element method solution, where the free surface is discretized. The solution is further compared to that of a 2.5D half-space, and with experimental results available in the literature.The asymptotic behaviour of the solution is explored for different limits of the distance, frequency and wave number, and the ensuing limits are compared to existing fundamental solutions.  相似文献   

15.
In this work we have developed several numerical examples of reaction-diffusion equations with growing domain. For this purpose we have used the Schnakenberg reaction model with parameters in space Turing. Therefore numerical tests are performed on the appearance of Turing patterns on surfaces that have high deformation rate. For the solution of reaction diffusion equations is presented a solution method on surfaces in three dimensions using the finite element method under the use of the total Lagrangian formulation. The results show that the formation of Turing patterns depends on the features of surface deformation and the rate at which change in position of each point of the domain. These results can explain some phenomena of change of pattern on the surface of the skin of animals that exhibit characteristic spots.  相似文献   

16.
This work analyzes the influence of the discretization error contained in the Finite Element (FE) analyses of each design configuration proposed by the structural shape optimization algorithms over the behavior of the algorithm. The paper clearly shows that if FE analyses are not accurate enough, the final solution provided by the optimization algorithm will neither be optimal nor satisfy the constraints. The need for the use of adaptive FE analysis techniques in shape optimum design will be shown. The paper proposes the combination of two strategies to reduce the computational cost related to the use of mesh adaptivity in evolutionary optimization algorithms: (a) the use of the algorithm described by Bugeda et al. [1] which reduces the computational cost associated to the adaptive FE analysis of each geometrical configuration and, (b) the successive increase of the required accuracy of the FE analyses in order to obtain a considerable reduction of the computational cost in the early stages of the optimization process.  相似文献   

17.
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1  Ue  5 m/s for the entrance velocity, 2  Dp  50 μm for the droplet diameter, 650  Re  8.500 for Reynolds number, and 0.05  Pi  5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work.  相似文献   

18.
In this work, a study about the vulnerability and seismic damage of unreinforced masonry buildings is carried out. Three models of buildings representatives of the Eixample district of Barcelona have been chosen. The seismic vulnerability is evaluated by means of the Risk-UE methodology. The seismic demand is described by elastic project spectrum, in this case, defined by the Eurocode 8. Fragility curves are obtained from a nonlinear analysis, considering the capacity spectra. Expected seismic damage is gotten with the damage probability matrices, which indicate the occurrence probability of a damage state for a seismic demand given. The analysis of the buildings has been performed by TreMuri program by means of a macroelements model, which represents of a whole masonry panel. The buildings, here, analyzed are real and detailed structural drawings and reports have been used to model them. The results shown a considerable vulnerability in this type of buildings, therefore, in spite of the seismic hazard the expected seismic risk is significant.  相似文献   

19.
The development of more and more potent computers and the recent research in the field of hidroinformatics makes possible the free surface flow modelling in two dimensions caused by earthen dam failures. In this paper, the results obtained by uni-dimensional model (HEC-RAS) and two-dimensional model (CARPA) are compared. The use of the HEC-RAS software assumes the hypothesis of unidimensionality to be true, no infiltration and existence of a minimal initial flow. The comparison is made by analyzing the effect of these hypothesis in the downstream flow hydrographs. The used models reproduce the water discharge generated by a possible failure of dam number 1 of the 5th District of the Segarra-Garrigues Irrigation Project in the Ebro river basin in Spain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号