首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this study a model which was developed previously is used to theoretically investigate the steady flow of a particulate suspension into two-dimensional horizontal and inclined channels. The continuity equation for the fluid and the simplified two-dimensional Navier-Stokes equations are then solved together with a particle concentration equation. This latter equation is formulated by considering the balance between the particle flux due to gravity with the corresponding particle fluxes due to convection and shear-induced diffusion. The resulting coupled system of equations is solved numerically using a specialised finite-difference method. It is found, for the parameter range for flows of proppants in hydraulic fractures, that when the suspension enters the channel with a uniform velocity profile it almost instantaneously becomes parabolic. In addition, the effects of particle sedimentation are most dominant in the entrance region, but further downstream such effects are balanced as shear-induced particle diffusion becomes more important. It is also shown that the suspension flow depends critically on the choice of the parameters used, e.g. the ratio of the particle radius to the height of the channel.  相似文献   

3.
The objective of this work is to investigate what mechanisms should be employed to qualitatively/quantitatively predict particle migration in a suspension flow. Based on the diffusive flux model originally proposed by Phillips et al. [R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, A constitutive equation for concentrated suspensions that account for shear-induced particle migration, Phys. Fluids A 4 (1992) 30–40], we survey the accuracy of three models including original Phillips model (Model I), modified Phillips model with curvature-induced migration mechanism (Model II), and finally the modified Model II with volume-fraction-dependent parameters (Model III). The empirical parameters which appear in the three models are determined by fitting to independent concentric Couette experiments. The accuracy of three models in concentric Couette problem is comparable except that Model III shows more improved predictions near the inner cylinder. However, the predictions of the three models are entirely different on a qualitative level for parallel plate problems and the existence and direction of particle migration are severely model-dependent. Models II and III predict no migration or very slight migration at high volume fraction, which is in good agreement with the previous experiments, whereas Model I predicts inward migration. We show that Model III accurately predicts a solid-free region near the center at low volume fraction, which was experimentally observed.In addition to a survey of migration mechanisms, we developed a frame-invariant curvature-induced migration model applicable to multi-dimensional flows. A transient 2D mixed-order finite element method (FEM) code was implemented to compare the predictions of the three models in a 2D problem. In this work, we considered the eccentric Couette problem, which is often used as a benchmarking problem. Though there is not much difference among the three models, Model III predicts that the particle migration is slightly retarded at high shear rate regions.  相似文献   

4.
We present an efficient implementation of the proper (in vivo) outlet boundary conditions in detailed, three‐dimensional (3D) and time‐periodic simulations of blood flow through arteries. This is achieved through the intermediate use of an approximate ‘simulant’ model of the outlet pressure/flow relationship corresponding to the full 3D and time‐dependent numerical simulation. This model allows us to efficiently couple the 3D outlet pressure/flow conditions to the equivalent relations due to the downstream arterial network, as obtained from a one‐dimensional approximate model in the form of Fourier frequency impedance coefficients. An adjustable time‐periodic function correction term in the simulant model requires input from the full 3D model that has to run iteratively until convergence. The advantage of the proposed numerical scheme is that it decouples the upstream detailed simulation from the downstream approximate network model offering exceptional versatility. This approach is demonstrated here in a series of detailed 3D simulations of blood flow, performed using the commercial software FLUENT?, through an asymmetric arterial bifurcation. Two cases are considered: first a healthy system patterned after the left main coronary arterial bifurcation, and second a diseased case where an occlusion has developed in one of the daughter vessels, resulting in strengthening the asymmetry of the bifurcation. Rapid convergence of the iterative process was achieved in both cases. Subtle changes occur in the shear patterns of the daughter vessels, whereas the flow distribution is quite different. In the presence of a stenosis additional regions of low shear develop due to inertial effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.  相似文献   

6.
An asymptotic model of a hydraulic-fracture flow of a sedimenting concentrated suspension is formulated on the basis of the two-fluid approach with account of transverse particle migration. In the thin-layer approximation, a two-dimensional system of equations averaged across the fracture is constructed with account for a nonuniform distribution of the particle concentration. As compared to the similar model without particle migration, the averaged two-dimensional equations contain modified coefficients which explicitly depend on the width of the flow core occupied by the particles. Using the model constructed, a numerical simulation is performed, which shows that the particle migration towards the fracture center results in the increase in the depth of particle penetration into the fracture and the suppression of gravitational convection in the vicinity of the leading front. The calculations are compared with available experimental data and an analytical formula for the height of the dense packed sediment. A good agreement between the analytical theory, the experiments, and the two-dimensional calculations is attained.  相似文献   

7.
A suspension of non‐neutrally buoyant, large, nearly monodisperse spheres is studied both in batch sedimentation and in shear between concentric rotating cylinders. We apply a continuum constitutive equation based on the diffusive flux model augmented with buoyancy terms derived by Acrivos and coworkers and discretize the resulting equation set with the finite element method. We simulate batch sedimentation using this method and obtain a reasonable match with experiment. Next used two‐dimensional NMR imaging to measure the evolution of solid fraction profiles in the same suspension undergoing flow between rotating concentric cylinders with two different initial conditions. Here, both gravity‐induced and shear‐induced particle migration are significant. Under these conditions, we have found that simulating the correct initial condition is critical to matching the experimental results. When this is done, the model results compare well with the experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Batch sedimentation of non‐colloidal particle suspensions is studied with nuclear magnetic resonance flow visualization and continuum‐level numerical modelling of particle migration. The experimental method gives particle volume fraction as a function of time and position, which then provides validation data for the numerical model. A finite element method is used to discretize the equations of motion, including an evolution equation for the particle volume fraction and a generalized Newtonian viscosity dependent on local particle concentration. The diffusive‐flux equation is based on the Phillips model (Phys. Fluids A 1992; 4 :30–40) and includes sedimentation terms described by Zhang and Acrivos (Int. J. Multiphase Flow 1994; 20 :579–591). The model and experiments are utilized in three distinct geometries with particles that are heavier and lighter than the suspending fluid, depending on the experiment: (1) sedimentation in a cylinder with a contraction; (2) particle flotation in a horizontal cylinder with a horizontal rod; and (3) flotation around a rectangular inclusion. Secondary flows appear in both the experiments and the simulations when a region of higher density fluid is above a lower density fluid. The secondary flows result in particle inhomogeneities, Rayleigh–Taylor‐like instabilities, and remixing, though the effect in the simulations is more pronounced than in the experiments. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

9.
Liquid-phase migration in highly concentrated suspensions undergoing constant-force squeeze flow is modeled numerically by taking into account the time and position dependence of the rheological properties due to changes in the volume fraction of solids. This is done by coupling the equation of motion for a non-Newtonian material that behaves approximately as a Bingham plastic with a continuity equation that includes diffusive flux. The developed model was first tested with experimental data and then used to study the effect of various parameters on liquid-phase migration.  相似文献   

10.
In this work we have experimentally measured the apparent wall slip velocity in open channel flow of neutrally buoyant suspension of non-colloidal particles. The free surface velocity profile was measured using the tool of particle imaging velocimetry (PIV) for two different channels made of plane and rough walls. The rough walled channel prevents wall slip, whereas the plane wall showed significant wall slip due to formation of slip layer. By comparing the velocity profiles from these two cases we were able to determine the apparent wall slip velocity. This method allows characterization of wall slip in suspension of large sized particles which cannot be performed in conventional rheometers. Experiments were carried out for concentrated suspensions of various particle volume concentrations and for two different sizes of particles. It was observed that wall slip velocity increases with particle size and concentration but decreases with increase in the viscosity of suspending fluid. The apparent wall slip velocity coefficients are in qualitative agreement with the earlier measurements. The effect of wall slip on free surface corrugation was also studied by analyzing the power spectral density (PSD) of the refracted light from the free surface. Our results indicate that free surface corrugation is a bulk flow response and it does not arise from boundary problem such as development of slip layer.  相似文献   

11.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper reports on a numerical simulation and experimental validation of fluid flow and conjugate heat transfer characteristics of new vascular channels, whose cross-sections are semi-circular. The numerical analysis covers the Reynolds number range of 30−2000, with a cooling channel volume fraction of 0.04, pressure drop range of 30−105 Pa. Six flow configurations were considered: first, second, and third constructal structures with optimized hydraulic diameters and non-optimized hydraulic diameter for each system size 10 × 10, 20 × 20, and 50 × 50, respectively. The numerical results of the proposed vascular channels show that the channel configurations of the optimized constructs show much lower flow resistance and temperature distribution than those of the non-optimized constructs. It is also shown that the power component in the power-law relationship between mass flow rate and pressure drop decreases as the system size and mass flow rates increase. The numerical results are validated by experimental data, and with the two exhibiting excellent agreement in all cases. The validation study against the experimental data shows that the presented numerical model is a reliable tool for predicting the performance of cooling plates under practical operating conditions and for the design of self healing or cooling system.  相似文献   

13.
The three-dimensional transition to turbulence in the transonic flow around a NACA0012 wing of constant spanwise section has been analysed at zero incidence and within the Reynolds number range [3000, 10000], by performing the direct numerical simulation. The successive stages of the 2D and 3D transition beyond the first bifurcation have been identified. A 2D study has been carried out near the threshold concerning the appearance of the first bifurcation that is the von-Kármán instability. The critical Mach number associated with this flow transition has been evaluated. Three other successive stages have been detected as the Mach number further increases in the range [0.3, 0.99]. Concerning the 3D transition of this nominally 2D flow configuration, the amplification of the secondary instability has been studied within the Reynolds number range of [3000, 5000]. The formation of counter-rotating longitudinal vorticity cells and the consequent appearance of a large-scale spanwise wavelength have been obtained downstream of the trailing-edge shock. A vortex dislocation pattern is developed as a consequence of the shock-vortex interaction near the trailing edge. The subcritical nature of the present 3D transition to turbulence has been proven by means of the DNS amplification signals and the Landau global oscillator model.  相似文献   

14.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

15.
郭子漪  赵建福  李凯  胡文瑞 《力学学报》2022,54(5):1186-1198
作为流动与传热相互耦合的非线性过程, 热毛细对流有着复杂的转捩过程, 探究流场和温度场随参数变化而发生的分岔现象, 是热毛细对流研究的一个重要课题. 基于本征正交分解的POD-Galerkin降维方法可以通过提取特征模态, 构建低维模型, 实现流场的快速计算. 数值分岔方法可以通过求解含参数动力系统的分岔方程, 直接计算稳定解和分岔点. 探究了将直接数值模拟方法、POD-Galerkin降维方法、数值分岔方法的优势结合, 以提高热毛细对流转捩过程分析效率的可行性. 利用直接数值模拟得到的流场和温度场数据, 构建了不同体积比下, 二维有限长液层热毛细对流的POD-Galerkin低维模型, 在低维模型上采用数值积分及数值分岔方法计算了分岔点, 得到了低维方程的分岔图. 在一定参数范围内, 在低维模型上模拟热毛细对流, 对雷诺数和体积比进行参数外推, 通过与直接数值模拟的结果对比, 验证了低维模型的准确性与鲁棒性. 说明了低维方程可以定性反映原高维系统的流动特性, 而定量方面, 由低维模型和直接数值模拟计算得到的周期解频率的相对误差大约为5%. 验证了利用POD-Galerkin降维方法研究热毛细对流的可行性.   相似文献   

16.
In this paper, a modified particle temperature model for concentrated suspensions is proposed, which allows for the shear-induced migration of particles. The migration is modelled by a convection–diffusion equation, derived from the particle mass and momentum conservation. The model is implemented in an unstructured finite volume method and is utilized to investigate the shear-induced particle migration in channel flow. The profiles and the evolution of the velocity, concentration and particle temperature along the channel are presented. The entrance lengths needed to reach a fully developed profile of the corresponding field variables are also checked against different averaged concentrations and different relative particle radii. Comparison with available experimental data is made whenever possible.  相似文献   

17.
定床弯道内水沙两相运动的数值模拟   总被引:1,自引:0,他引:1  
刘诚  沈永明 《力学学报》2009,41(3):318-328
在适体同位网格中采用非正交曲线坐标系下的三维k-ε-kp固液两相双流体湍流模型研究弯道内水流和悬浮泥沙运动,主要计算了试验室S型水槽内清水流动的三维流场、120°弯道内水沙两相流动中底沙与底流的运动轨迹以及S型水槽内水沙两相流动的两相流场和泥沙浓度场. 对于S型水槽内清水流动,数值结果与试验结果吻合良好. 120°弯道内水沙两相流动中固液两相的运动轨迹在弯道直线段基本重合,在弯道内泥沙轨迹逐步偏离水体轨迹,其偏离程度随泥沙粒径增大而增大. 从S型水槽内水沙两相流动计算结果中发现泥沙纵向流速在壁面附近比水流纵向速度大,在远离壁面区域比水流纵向速度小;弯道内泥沙横向流速比水流横向流速小;垂向流速在直线段和泥沙沉速相当,在弯道内受螺旋水流影响而变化;两相流速差别随泥沙粒径增大而变大;泥沙浓度呈现下浓上稀的分布,在弯道内横向断面上呈现凸岸大凹岸小的分布,泥沙浓度随泥沙粒径增大而减小.   相似文献   

18.
Flow-induced fiber orientation and concentration distributions were measured in a concentrated fiber suspension (CFS) and a dilute one (DFS). The channel has a thin slit geometry containing a circular cylinder. In the previous work, many researchers have qualitatively studied fiber orientation and concentration distributions in injection-molded products of fiber-reinforced plastics. In the present work, however, they are quantitatively estimated by direct observation of fibers in the concentrated suspension flow. For the CFS, some fibers rotate in an expansion part between the channel wall and the circular cylinder, and the fiber orientation becomes almost random state. On the other hand, fibers are perfectly aligned along the flow direction owing to the elongational flow near the centerline downstream of the cylinder. The fiber concentration has a flat distribution except near the channel wall and the centerline. For the DFS a minimum in the fiber concentration distribution was clearly observed on the centerline, and two peaks beside the centerline and near the channel wall. This characteristic distribution is caused by the fiber-wall and fiber-cylinder interactions. It is found that the obstacle such as the circular cylinder in the channel significantly affects the fiber orientation downstream of the obstacle for the CFD, while it affects the fiber concentration distribution for the DFS.  相似文献   

19.
The flow bifurcation scenario and heat transfer characteristics in grooved channels, are investigated by direct numerical simulations of the mass, momentum and energy equations, using the spectral element methods for increasing Reynolds numbers in the laminar and transitional regimes. The Eulerian flow characteristics show a transition scenario of two Hopf bifurcations when the flow evolves from a laminar to a time-dependent periodic and then to a quasi-periodic flow. The first Hopf bifurcation occurs to a critical Reynolds number Rec1 that is significantly lower than the critical Reynolds number for a plane-channel flow. The periodic and quasi-periodic flows are characterized by fundamental frequencies ω1 and m· ω1+n·ω2, respectively, with m and n integers. Friction factor and pumping power evaluations demonstrate that these parameters are much higher than the plane channel values. The time-average mean Nusselt number remains mostly constant in the laminar regime and continuously increases in the transitional regime. The rate of increase of this Nusselt number is higher for a quasi-periodic than for a periodic flow regime. This higher rate originates because better flow mixing develops in quasi-periodic flow regimes. The flow bifurcation scenario occurring in grooved channels is similar to the Ruelle-Takens-Newhouse transition scenario of Eulerian chaos, observed in symmetric and asymmetric wavy channels.  相似文献   

20.
In this paper we study the bulk stress of a suspension of rigid particles in viscoelastic fluids. We first apply the theoretical framework provided by Batchelor [J. Fluid Mech. 41 (1970) 545] to derive an analytical expression for the bulk stress of a suspension of rigid particles in a second-order fluid under the limit of dilute and creeping flow conditions. The application of the suspension balance model using this analytical expression leads to the prediction of the migration of particles towards the centerline of the channel in pressure-driven flows. This is in agreement with experimental observations. We next examine the effects of inertia (or flow Reynolds number) on the rheology of dilute suspensions in Oldroyd-B fluids by two-dimensional direct numerical simulations. Simulation results are verified by comparing them with the analytical expression in the creeping flow limit. It is seen that the particle contribution to the first normal stress difference is positive and increases with the elasticity of the fluid and the Reynolds number. The ratio of the first normal stress coefficient of the suspension and the suspending fluid decreases as the Reynolds number is increased. The effective viscosity of the suspension shows a shear-thinning behavior (in spite of a non-shear-thinning suspending fluid) which becomes more pronounced as the fluid elasticity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号