首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new approach for solving accurate approximate analytical higher-order solutions for strong nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. The system is conservative and with odd nonlinearity. The new approach couples Newton’s method with harmonic balancing. Unlike the classical harmonic balance method, accurate analytical approximate solutions are possible because linearization of the governing differential equation by Newton’s method is conducted prior to harmonic balancing. The approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. Using the approach, accurate higher-order approximate analytical expressions for period and periodic solution are established. These approximate solutions are valid for small as well as large amplitudes of oscillation. In addition, it is not restricted to the presence of a small parameter such as in the classical perturbation method. Illustrative examples are presented to verify accuracy and explicitness of the approximate solutions. The effect of strong quintic nonlinearity on accuracy as compared to cubic nonlinearity is also discussed.  相似文献   

3.
Analytical solutions to autonomous, nonlinear, third-order nonlinear ordinary differential equations invariant under time and space reversals are first provided and illustrated graphically as functions of the coefficients that multiply the term linearly proportional to the velocity and nonlinear terms. These solutions are obtained by means of transformations and include periodic as well as non-periodic behavior. Then, five approximation methods are employed to determine approximate solutions to a nonlinear jerk equation which has an analytical periodic solution. Three of these approximate methods introduce a linear term proportional to the velocity and a book-keeping parameter and employ a Linstedt–Poincaré technique; one of these techniques provides accurate frequencies of oscillation for all the values of the initial velocity, another one only for large initial velocities, and the last one only for initial velocities close to unity. The fourth and fifth techniques are based on the Galerkin procedure and the well-known two-level Picard’s iterative procedure applied in a global manner, respectively, and provide iterative/sequential approximations to both the solution and the frequency of oscillation.  相似文献   

4.
The article presents a mathematical model of nonlinear reaction diffusion equation with fractional time derivative α (0 < α ? 1) in the form of a rapidly convergent series with easily computable components. Fractional reaction diffusion equation is used for modeling of merging travel solutions in nonlinear system for popular dynamics. The fractional derivatives are described in the Caputo sense. The anomalous behaviors of the nonlinear problems in the form of sub- and super-diffusion due to the presence of reaction term are shown graphically for different particular cases.  相似文献   

5.
In this paper, we propose a new method called the fractional natural decomposition method (FNDM). We give the proof of new theorems of the FNDM, and we extend the natural transform method to fractional derivatives. We apply the FNDM to construct analytical and approximate solutions of the nonlinear time‐fractional Harry Dym equation and the nonlinear time‐fractional Fisher's equation. The fractional derivatives are described in the Caputo sense. The effectiveness of the FNDM is numerically confirmed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we compared two different methods, one numerical technique, viz Legendre multiwavelet method, and the other analytical technique, viz optimal homotopy asymptotic method (OHAM), for solving fractional‐order Kaup–Kupershmidt (KK) equation. Two‐dimensional Legendre multiwavelet expansion together with operational matrices of fractional integration and derivative of wavelet functions is used to compute the numerical solution of nonlinear time‐fractional KK equation. The approximate solutions of time fractional Kaup–Kupershmidt equation thus obtained by Legendre multiwavelet method are compared with the exact solutions as well as with OHAM. The present numerical scheme is quite simple, effective, and expedient for obtaining numerical solution of fractional KK equation in comparison to analytical approach of OHAM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Using the method of multiple scales, the nonlinear instability problem of two superposed dielectric fluids is studied. The applied electric filed is taken into account under the influence of external modulations near a point of bifurcation. A time varying electric field is superimposed on the system. In addition, the viscosity and variable gravity force are considered. A generalized equation governing the evolution of the amplitude is derived in marginally unstable regions of parameter space. A bifurcation analysis of the amplitude equation is carried out when the dissipation due to viscosity and the control parameter are both assumed to be small. The solution of a nonlinear equation in which parametric and external excitations are obtained analytically and numerically. The method of generalized synchronization is applied to determine the equations that describe the modulation of the amplitude and phase. These equations are used to determine the steady state equations. Frequency response curves are presented graphically. The stability of the proposed solution is determined applying Liapunov's first method. Numerical solutions are presented graphically for the effects of the different equation parameters on the system stability, response and chaos.  相似文献   

8.
In this article, differential transform method (DTM) has been successfully applied to obtain the approximate analytical solutions of the nonlinear homogeneous and non-homogeneous gas dynamic equations, shock wave equation and shallow water equations with fractional order time derivatives. The true beauty of the article is manifested in its emphatic application of Caputo fractional order time derivative on the classical equations with the achievement of the highly accurate solutions by the known series solutions and even for more complicated nonlinear fractional partial differential equations (PDEs). The method is really capable of reducing the size of the computational work besides being effective and convenient for solving fractional nonlinear equations. Numerical results for different particular cases of the equations are depicted through graphs.  相似文献   

9.
The fractional Fokker–Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine some practical numerical methods to solve a class of initial-boundary value problems for the fractional Fokker–Planck equation on a finite domain. The solvability, stability, consistency, and convergence of these methods are discussed. Their stability is proved by the energy method. Two numerical examples are also presented to evaluate these finite difference methods against the exact analytical solutions.  相似文献   

10.
In this article, the homotopy analysis method is used to obtain the approximate analytical solutions of the non-linear Swift Hohenberg equation with fractional time derivative. The fractional derivative is described in Caputo sense. Numerical results reveal that the method is easy to implement, reliable and accurate when applied to time fractional nonlinear partial differential equations. Effects of parameters of physical importance on the probability density function and the convergence of the approximate series solution using residual error formula with the proper choices of auxiliary parameter for various fractional Brownian motions and standard motion are depicted through graphs and tables for different particular cases.  相似文献   

11.
Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are increasingly used in modeling practical superdiffusive problems in fluid flow, finance and other areas of application. This paper presents the analytical solutions of the space fractional diffusion equations by two-step Adomian Decomposition Method (TSADM). By using initial conditions, the explicit solutions of the equations have been presented in the closed form and then their solutions have been represented graphically. Two examples, the first one is one-dimensional and the second one is two-dimensional fractional diffusion equation, are presented to show the application of the present technique. The solutions obtained by the standard decomposition method have been numerically evaluated and presented in the form of tables and then compared with those obtained by TSADM. The present TSADM performs extremely well in terms of efficiency and simplicity.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(21-22):4958-4971
In this paper, we present a numerical scheme using uniform Haar wavelet approximation and quasilinearization process for solving some nonlinear oscillator equations. In our proposed work, quasilinearization technique is first applied through Haar wavelets to convert a nonlinear differential equation into a set of linear algebraic equations. Finally, to demonstrate the validity of the proposed method, it has been applied on three type of nonlinear oscillators namely Duffing, Van der Pol, and Duffing–van der Pol. The obtained responses are presented graphically and compared with available numerical and analytical solutions found in the literature. The main advantage of uniform Haar wavelet series with quasilinearization process is that it captures the behavior of the nonlinear oscillators without any iteration. The numerical problems are considered with force and without force to check the efficiency and simple applicability of method on nonlinear oscillator problems.  相似文献   

13.
By introducing the fractional derivatives in the sense of Caputo, we use the adomian decomposition method to construct the approximate solutions for the cubic nonlinear fractional Schordinger equation with time and space fractional derivatives. The exact solution of the cubic nonlinear Schrodinger equation is given as a special case of our approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equation.  相似文献   

14.
In this work, we implement a relatively new analytical technique, the exp-function method, for solving nonlinear special form of generalized nonlinear (2 + 1) dimensional Broer-Kaup-Kupershmidt equation, which may contain high nonlinear terms. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations which applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and reliability of exp method. It is predicted that exp-function method can be found widely applicable in engineering.  相似文献   

15.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

16.
This work suggested a new generalized fractional derivative which is producing different kinds of singular and nonsingular fractional derivatives based on different types of kernels. Two new fractional derivatives, namely Yang-Gao-Tenreiro Machado-Baleanu and Yang-Abdel-Aty-Cattani based on the nonsingular kernels of normalized sinc function and Rabotnov fractional-exponential function are discussed. Further, we presented some interesting and new properties of both proposed fractional derivatives with some integral transform. The coupling of homotopy perturbation and Laplace transform method is implemented to find the analytical solution of the new Yang-Abdel-Aty-Cattani fractional diffusion equation which converges to the exact solution in term of Prabhaker function. The obtained results in this work are more accurate and proposed that the new Yang-Abdel-Aty-Cattani fractional derivative is an efficient tool for finding the solutions of other nonlinear problems arising in science and engineering.  相似文献   

17.
In this paper, the approximate analytical solutions of Lotka–Volterra model with fractional derivative have been obtained by using hybrid analytic approach. This approach is amalgamation of homotopy analysis method, Laplace transform, and homotopy polynomials. First, we present an alternative framework of the method that can be used simply and effectively to handle nonlinear problems arising in several physical phenomena. Then, existence and uniqueness of solutions for the fractional Lotka–Volterra equations are discussed. We also carry out a detailed analysis on the stability of equilibrium. Further, we have derived the approximate solutions of predator and prey populations for different particular cases by using initial values. The numerical simulations of the result are depicted through different graphical representations showing that this hybrid analytic method is reliable and powerful method to solve linear and nonlinear fractional models arising in science and engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.  相似文献   

19.
联合Duffing方程和Van der Pol方程的非线性分数阶微分方程   总被引:1,自引:0,他引:1  
本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解.  相似文献   

20.
In this paper, based on the variational approach and iterative technique, the existence of nontrivial weak solutions is derived for a fractional advection-dispersion equation with impulsive effects, and the nonlinear term of fractional advection-dispersion equation contain the fractional order derivative. In addition, an example is presented as an application of the main result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号