首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters throughout the flow, causing fewer vortices to be generated under the control. However, when the structural spacing is sufficiently large, the generation of new vortex is not suppressed over the no-control surface in the near-wall region, resulting in an increase of the second- and fourth-quadrant Reynolds shear stresses. Although strong actuating velocity intensifies the near-wall turbulence, the increase in the turbulence activity is attributed to the generation of counter-clockwise near-wall vortices by the increased vortex transport.  相似文献   

2.
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction.  相似文献   

3.
4.
Direct numerical simulations of turbulent heat transfer in a channel flow are performed to investigate the effects of Reynolds and Prandtl numbers on higher-order turbulence statistics such as a turbulent Prandtl number and the budget for the dissipation rate of the temperature variance. The Reynolds numbers based on the friction velocity and the channel half width are 180 and 395, and the molecular Prandtl numbers Pr’s 0.71–10.0. Careful attention is paid to ensure accuracy of the higher-order statistics through the use of a high spatial resolution comparable to Batchelor length scale. The wall-asymptotic value of the turbulent Prandtl number is mostly independent of Reynolds number for the current range of Pr’s. The budget for the dissipation rate of the temperature variance has been computed, and the negligible effect of a Reynolds number on the sum of all source and sink terms in near-wall region in the current computational range is found. This result is quite similar to the one in the budget for the dissipation rate of turbulent energy. In addition, a priori test for existing models is also performed to assess the Pr dependence on the individual terms and their summations in the budget.  相似文献   

5.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

6.
7.
Direct Numerical Simulations in a turbulent channel flow at a moderate Reynolds number are performed in order to investigate the potential of Dielectric Barrier Discharge (DBD) plasma actuators for the reduction of the skin-friction drag. The idea is to use a sparse array of streamwise-aligned plasma actuators to produce near-wall spanwise-orientated jets in order to destroy the events which transport high-speed fluid towards the wall. It is shown that it is possible to reduce the drag by about 33.5% when the streamwise-aligned actuators are configured to generate appropriate spanwise-orientated jets very close to the wall so that the sweeps which are mainly responsible for the skin-friction are destroyed. We demonstrate that it is possible to achieve significant drag reduction with a sparse array of streamwise-aligned plasma actuators, with one order of magnitude less actuators than previous experiments in a similar set-up.  相似文献   

8.
We perform DNS of passive scalar transport in low Reynolds number turbulent channel flow at Schmidt numbers up to Sc = 49. The high resolutions required to resolve the scalar concentration fields at such Schmidt numbers are achieved by a hierarchical algorithm in which only the scalar fields are solved on the grid dictated by the Batchelor scale. The velocity fields are solved on coarser grids and prolonged by a conservative interpolation to the fine-grid.

The trends observed so far at lower Schmidt numbers Sc  10 are confirmed, i.e. the mean scalar gradient steepens at the wall with increasing Schmidt number, the peaks of turbulent quantities increase and move towards the wall. The instantaneous scalar fields show a dramatic change. Observable structures get longer and thinner which is connected with the occurrence of steeper gradients, but the wall concentrations penetrate less deeply into the plateau in the core of the channel.

Our data shows that the thickness of the conductive sublayer, as defined by the intersection point of the linear with the logarithmic asymptote scales with Sc−0.29. With this information it is possible to derive an expression for the dimensionless transfer coefficient K+ which is only dependent on Sc and Reτ. This expression is in full accordance to previous results which demonstrates that the thickness of the conductive sublayer is the dominating quantity for the mean scalar profile.  相似文献   


9.
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10.  相似文献   

10.
In this paper an algebraic model from the constitutive equations of the subgrid stresses has been developed. This model has an additional term in comparison with the mixed model, which represents the backscatter of energy explicitly. The proposed model thus provides independent modelling of the different energy transfer mechanisms, thereby capturing the effect of subgrid scales more accurately. The model is also found to depict the flow anisotropy better than the linear and mixed models. The energy transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence. The turbulent plane channel flow simulation is performed over three Reynolds numbers, Reτ=180, 395 and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the mean flow quantities. However, the algebraic model is found to be more accurate for the turbulence intensities and the higher‐order statistics. The capability of the algebraic model to represent backscatter is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental results from a study of surface roughness effects on polymer drag reduction in a zero-pressure gradient flat-plate turbulent boundary layer are presented. Both slot-injected polymer and homogeneous polymer ocean cases were considered over a range of flow conditions and surface roughness. Balance measurements of skin friction drag reduction are presented. Drag reductions over 60% were measured for both the injected and homogeneous polymer cases even with fully rough surfaces. As the roughness increased, higher polymer concentration was required to achieve a given level of drag reduction for the homogeneous case. With polymer injection, increasing surface roughness caused the drag reduction to decrease to low levels more quickly when the polymer expenditure was decreased or the freestream velocity was increased. However, the percent drag reductions on the rough surfaces with polymer injection were often substantially larger than on the smooth surface. Remarkably, in some cases, the skin friction drag force on a rough surface with polymer injection was less than the drag force observed on a smooth surface at comparable conditions. An erratum to this article can be found at  相似文献   

12.
13.
Direct numerical simulations of turbulent viscoelastic-fluid flow in a channel with a rectangular orifice were performed to investigate the influence of viscoelasticity on turbulence statistics and turbulent structures downstream of the orifice. The geometry considered is periodic rectangular orifices with 1:2 expansion. The constitutive equation follows the Giesekus model, valid for polymer (or surfactant) solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. The friction Reynolds number and the Weissenberg number were set to 100 and 20-30, respectively. A drag reduction of about 20% was achieved in the viscoelastic flows. The onset Reynolds number for the transition from a symmetric to an asymmetric state was found to be shifted to higher values than that for the Newtonian flow. In the viscoelastic flow, the turbulent kinetic energy was decreased and fewer turbulent eddies were observed, as the Kelvin-Helmholtz vortices were quickly damped. Away from the orifice, quasi-streamwise vortices in the viscoelastic flow were sustained for a longer period, accompanied by energy exchange from elastic energy of the viscoelastic fluid to kinetic energy.  相似文献   

14.
Direct numerical simulation (DNS) of heat transfer in a channel flow obstructed by rectangular prisms has been performed for Reτ = 80–20, where Reτ is based on the friction velocity, the channel half width and the kinematic viscosity. The molecular Prandtl number is set to be 0.71. The flow remains unsteady down to Reτ = 40 owing to the disturbance induced by the prism. For Reτ = 30 and 20, the flow results in a steady laminar flow. In the vicinity of the prism, the three-dimensional complex vortices are generated and heat transfer is enhanced. The Reynolds number effect on the time-averaged vortex structure and the local Nusselt number are investigated. The mechanism of the heat transfer enhancement is discussed. In addition, the mean flow parameters such as the friction factor and the Nusselt number are examined in comparison with existing DNS and experimental data.  相似文献   

15.
Turbulent mixing of dual plumes emitting simultaneously from line sources in a turbulent channel flow has been studied using direct numerical simulation (DNS). Three test cases have been compared to investigate the effects of the source separation on turbulent mixing of the two instantaneous plumes. The dispersion and interference of dual plumes are investigated in both physical and spectral spaces, which include an analysis of statistical moments of the concentration field, cross-correlation between the two instantaneous plumes, pre-multiplied spectra of the velocity and concentration fields, and co-spectrum and coherency spectrum of the dual plumes. As the downstream distance from the line source increases, the plume development associated with a single source emission transitions from a turbulent convective stage to a turbulent diffusive stage. It is observed that a plume released from a ground-level source reaches the turbulent diffusive stage faster than that released from an elevated source. It is also observed that a smaller separation between the two line sources tends to facilitate a more rapid growth in the cross-correlation coefficient of two instantaneous plumes. In the near-source region, the maximum coherency spectrum is produced at lower frequencies indicating that dual-plume mixing is dominated by the external flapping effects of large-scale eddy motions. However, in the far downstream region of the sources, the coherency spectrum in the higher frequency range increases significantly, indicating that the spread of the total plume is larger than all scales of turbulent eddies, such that they all contribute to the in-plume mixing of the dual plumes.  相似文献   

16.
A fully developed turbulent channel flow controlled by traveling wave-like wall deformation under a constant pressure gradient condition is studied numerically and theoretically. First, direct numerical simulation (DNS) at three different friction Reynolds numbers, Reτ=90, 180, and 360, are performed to investigate the modification in turbulence statistics and their scaling. Unlike the previous study assuming a constant flow rate condition, suppression of the quasi-streamwise vortices is not observed in either drag decrease cases or drag increase cases. It is found in the drag reduction case, however, that the periodic component of the Reynolds shear stress (periodic RSS) is largely negative in the viscous sublayer and the buffer layer. For the maximum drag reduction case, the set of control parameters is found to be identical in wall units regardless of the Reynolds number, and the resulting mean velocity profiles are also observed to be approximately similar even with an additional case of Reτ=720. Based on this scaling, we propose a semi-empirical formula for the mean velocity profile modified by the present control. With this formula, about 20%25% drag reduction effect is predicted even at practically high Reynolds numbers, Reτ105106.  相似文献   

17.
The drag between phases plays an important role in the study of a turbulent two-phase suspension flow and its physical understanding will greatly promote progress in theoretical treatments of a whole range of important industrial and technical problems involving such a flow. The conventional practice of using the results of measurements based on a single particle in a laminar stream for the case of a turbulent flow of a dilute suspension is questioned. An analysis of the results of local measurements of upward turbulent flows of a solid particle-air two-phase suspension leads to the determination of the realistic particle drag coefficient over a wide range of flow conditions. It is established that the particle drag can be described by the simple Stokes law, based on an apparent turbulent viscosity of the fluid for the particles in the suspension flow. A correlation is provided for this apparent turbulent viscosity in terms of the particle size and concentration in the suspension, the local flow turbulence Reynolds number and the particle-to-fluid density ratio.  相似文献   

18.
Opposition controlled fully developed turbulent flow along a thin cylinder is analyzed by means of direct numerical simulations. The influence of cylinder curvature on the skin-friction drag reduction effect by the classical opposition control (i.e., the radial velocity control) is investigated. The curvature of the cylinder affects the uncontrolled flow statistics; for instance, skin-friction coefficient increases while Reynolds shear stress (RSS) and turbulent intensity decrease. However, the control effect in the case of a small curvature is similar to that in channel flow. When the curvature is large, the maximum drag reduction rate decreased. However, the optimal location of the detection plane is the same as that in a flat plate. Further, the drag reduction effect is achieved even on a high detection plane where the drag increases in the flat plate. Although a difference in the drag reduction effect can be observed with a change in the curvature, its mechanism considered in this analysis based on the transport of the Reynolds stress is similar to that of the flat plate.  相似文献   

19.
Skin friction drag is much greater in turbulent flows as compared with that in laminar flows. It is well known that traveling wave control can be used to achieve a large drag reduction. In the present study, a direct numerical simulation of a turbulent pipe flow was performed to clarify the mechanism of the drag reduction caused by the traveling wave control. The flow induced by the control was evaluated using pathline analysis. Near the wall, a “closed flow” was formed, wherein the injected particles return to the wall owing to the suction flow. The random component of Reynolds shear stress was perfectly suppressed in the closed flow, which suggests that there was no turbulence. The controlled flow was categorized into four patterns, and each flow characteristic and drag reduction effect was discussed. When the closing rate is high, the drag decreases, while when the closing rate is low, i.e., when the injected particles are released into the main flow, the turbulence is maintained. If the thickness of the layer suppressing turbulence is insufficient, a significant effect in terms of the drag reduction cannot be expected. The large drag reduction owing to the traveling wave control can be attributed to the elimination of turbulence in the region near the wall.  相似文献   

20.
Drag reduction is the effective reduction of the fluid flow friction brought about by the addition of small amounts of dissolved polymer, suspended particles, or emulsions. This study has focused on the turbulent-flow drag reduction effected by small amounts (10 -6–10 -3 g/ml) of polyisobutylene dissolved in organic solvents of varying solubility parameters. The data show that a maximum drag reduction (up to 70% for Reynolds numbers of 20,000) occurs in solvents with a solubility parameter near that of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号