首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this work, we have experimentally studied the structure and electrochemical properties of nanocrystalline TiFe- and LaNi5-type alloys. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo, Zr improved not only the discharge capacity but also the cycle life of these electrodes. In the nanocrystalline TiFe0.25Ni0.75, powder discharge capacity up to 155 mA h g−1 was measured (at 40 mA g−1 discharge current). On the other hand, a partial substitution of Ni by Al or Mn in LaNi5−xMx alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacity up to 258 mA h g−1 was measured (at 40 mA g−1 discharge current). The studies show, that electrochemical properties of Ni–MH batteries are the function of the microstructure and the chemical composition of used electrode materials.  相似文献   

2.
Studies of the combustion processes in the Ti-H, Zr-H, and Ti-Zr-H systems made it possible to develop a principally new method for producing refractory metal alloys through the compaction of a titanium hydride-zirconium hydride powder mixture followed by dehydrogenation. The procedure is briefly described. Experimental data on the formation of titanium-zirconium alloys with different structures, including an ω-phase alloy obtained at atmospheric pressure, are discussed. The experimental results clearly show that the structure of the alloy depends on the composition of the initial charge and the hydrogen content in the hydrides used. The interaction of the alloys obtained with hydrogen under conditions of self-propagating high-temperature synthesis yielded Ti0.9Zr0.1H1.87 (Ti9ZrH18.7), Ti0.67Zr0.33H1.81 (Ti2ZrH5.42), Ti0.5Zr0.5H1.37 (TiZrH2.74), and Ti0.3Zr0.7H1.96 (TiZr2.3H6.53) hydrides with face-centered cubic (fcc) and body-centered tetragonal (bct) structures. The removal of hydrogen from these hydrides (by annealing in vacuum at 700–1050°C) results in the recovery of the initial α and ω phases.  相似文献   

3.
《Solid State Ionics》2006,177(33-34):2945-2950
Ni-based cermets were prepared and reduced from mixtures of NiO and Ba2In0.6Ti1.4O5.70.3. A cermet containing 18.7 vol.% of Ni exhibits promising characteristics: 40% of open porosity and a lower DC resistivity than a Ni/YSZ cermet with a larger Ni content (30 vol.%). Its thermal expansion coefficient is 11.4 × 10 6 K 1 whereas that measured for Ba2In0.6Ti1.4O5.70.3 is 9.9 × 10 6 K 1. Electrical measurements vs. the Ni content have shown that the percolation threshold corresponds to 15.7 vol.% of Ni. By using saccharose as a pore former, the porosity of the electrode can be tuned. It is shown that the pore size is controlled by the particle size distribution of the pore former.  相似文献   

4.
Cross sectional and plane-view transmission electron microscopy (X- and PV-TEM) were used to investigate the initial growth phase of 5, 10, 20 and 40 nm thick Ni1-xFex (x=0.6–0.8) films, prepared on MgO(0 0 1) covered with a buffer layer of Fe or Ni as well as on naked MgO(0 0 1). The 100 nm thick buffer layers of Fe and Ni were pre-grown on MgO(0 0 1). All of Ni0.20Fe0.80, Ni0.40Fe0.60, Fe and Ni films could be epitaxially grown at 250°C by dc-biased plasma sputtering at 2.9 kV in pure Ar gas.The films of Ni0.20Fe0.80 and Ni0.40Fe0.60 were grown in their own stable phase, bcc and fcc on MgO(0 0 1), respectively. However, Ni0.20Fe0.80 film could be grown in fcc phase pseudomorphic with Ni(0 0 1) up to 20 nm thick on Ni/MgO(0 0 1), while Ni0.40Fe0.60 film in bcc phase pseudomorphic with Fe(0 0 1) up to 10 nm thick on Fe/MgO(0 0 1). With increasing thickness, their growth phases transformed into their own stable phases. Whether or not the pseudomorphic phase may be induced and what its critical thickness may be should depend primarily on the lattice misfit between the crystal planes in contact. The growth mode of Ni0.40Fe0.60 film was investigated more in details to be compared with the simulations of the average strain energy versus thickness and with those of the critical thickness of the pseudomorphic films versus the lattice misfit between the contacted crystal planes.  相似文献   

5.
X.C. Lu  J.H. Zhu  Z.H. Bi 《Solid State Ionics》2009,180(2-3):265-270
Composite materials of YSZ (yttria-stabilized zirconia) with various Ni–Fe alloys were synthesized and evaluated as the solid oxide fuel cell (SOFC) anode using a 200-µm thick YSZ electrolyte as support and YSZ +La0.8Sr0.2MnO3 (LSM) as cathode. The single cell with the YSZ + Ni0.75Fe0.25 anode exhibited the highest performance among all the investigated cells, e.g. a peak power density of 403, 337, 218 and 112 mW/cm2 was achieved with H2 fuel at 900, 850, 800 and 750 °C, respectively. The composite anode with the Ni0.75Fe0.25 alloy also had the lowest polarization resistance of 0.55 Ω·cm2 at 800 °C among all the alloy compositions, indicating that this specific alloy offered a better anode composition than pure Ni. The possible mechanism for the improved performance of Ni with the Fe alloying addition towards H2 oxidation was discussed.  相似文献   

6.
Stoichiometric Ni-bearing ferrite was formed by air oxidation of an iron(II) hydroxide suspension at an initial Ni : Fetot mol ratio (rNi) of 0.20 : 2.80 at pH 10.0 and 65°C. Most of products formed at rNi=0.40 : 2.60 and 0.60 : 2.40 were Ni-bearing ferrites, of which vacancies of Fe3+ ion on the lattice points may be considered. Only Ni, Zn-bearing ferrites were formed in the suspensions at initial (Ni + Zn)  : Fetot mol ratios (rNi + Zn) of 0.20 : 2.80–0.60 : 2.40 at pH 10.0 and 65°C. At higher rNi or rNi + Zn by-products containing Ni, Fe and O42− were formed. The formation of the by-products was depressed in the suspensions containing chloride ions in the place of sulfate ions.  相似文献   

7.
《Current Applied Physics》2010,10(2):574-579
BaBi4Ti4−xZrxO15 with x = 0.1, 0.2, 0.3 and 0.5, has been synthesized via modified solid state reaction route. X-ray diffraction studies confirmed the formation of single phase Zr4+ substituted BaBi4Ti4O15 up to x = 0.2. ZrO2 and Bi2O3 based impurity phases were found at x = 0.3 and 0.5 substitutions. However, Rietveld refinement showed the increase in lattice parameters of BaBi4Ti4O15 up to x = 0.5 substitutions. A broad dielectric peak associated with frequency dependence dielectric maximum temperature was observed at low substitutions. Relaxor behavior was suppressed at x = 0.5 substitution. A broadening and shifting of permittivity-temperature peak was found for the substitution. The high temperature slopes of dielectric peaks were analyzed by quadratic law for relaxors. The degree of relaxation and phase transformation diffusiveness were investigated at different substitutions.  相似文献   

8.
The binary system of 0.8Pb(Zr1/2Ti1/2)O3–0.2Pb(Ni1/3Nb2/3)O3 ceramics were synthesized by conventional mixed oxide and columbite method. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases for the columbite prepared sample. Rhombohedral to tetragonal phase transition for columbite method was different compared with those of the mixed oxide method. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature TRho–Tetra = 195 °C, and then a maximum permittivity (36,000 at 10 kHz) at the transition temperature Tm = 277 °C on ceramics prepared with the columbite method. However, piezoelectric coefficient (d33) was measured to be 282 pC/N for the conventional method and higher than the columbite method. The results were related to the phase compositions and porosity of the ceramics.  相似文献   

9.
We have studied by Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) and Auger Electron Spectroscopy (AES) Ni–Al alloyed layers formed by annealing, around 780 K, Al deposits on a stepped Ni(1 1 1) surface. The surface structure and composition of the thin epitaxial Ni3Al and NiAl films, obtained respectively below and above a critical Al initial coverage θc, differ markedly from those of corresponding bulk alloys.The Ni3Al ordered films form in a concentration range larger than the stability domain of the L12 Ni3Al phase. The NiAl films present a marked distortion with respect to the lattice unit cell of the B2 NiAl phase, which slowly decreases when the film thickness increases.It also appears that the value of θc depends on the morphology of the Ni(1 1 1) substrate, increasing from θc = 4.5 ML for a flat surface to θc = 10 ML for a surface with a miscut of 0.4°. This could be directly related to the presence of steps, which favour Ni–Al interdiffusion.  相似文献   

10.
Nanocrystalline single phase cubic Ti0.9Al0.1B has been prepared at room temperature in a minimum duration of 4 h by mechanical alloying the stoichiometric mixture of Ti, Al and B powders in a high energy planetary ball mill under argon atmosphere. The Rietveld's structure refinement of X-ray diffraction data reveals that cubic Ti–Al–B phase is initiated just after 1 h of milling and at the same time α-Ti (hcp) phase partially transforms to metastable β-Ti (bcc) phase. In the course of milling, ordered Ti–Al–B lattice gradually transforms to a distorted state and the degree of distortion increases with milling time up to 15 h. The formation of cubic Ti0.9Al0.1B is also confirmed from the selected area electron diffraction (SAED) pattern. Microstructure characterization by high resolution transmission electron microscopy (HRTEM) reveals that Ti–Al–B nanoparticles are isotropic in nature with average particle size ~4.5 nm and is in good agreement with the value obtained from the Rietveld analysis of X-ray diffraction data.  相似文献   

11.
Ferroelectric lead zirconate titanate–lead cobalt niobate ceramics with the formula (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3 where x = 0.0–0.5 were fabricated using a high temperature solid-state reaction method. The formation process, the structure and homogeneity of the obtained powders have been investigated by X-ray diffraction method as well as the simultaneous thermal analysis of both differential thermal analysis (DTA) and thermogravimetry analysis (TGA). It was observed that for the binary system (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3, the change in the calcination temperature is approximately linear with respect to the PCoN content in the range x = 0.0–0.5. In addition, X-ray diffraction indicated a phase transformation from a tetragonal to a pseudo-cubic phase when the fraction of PCoN was increased. The dielectric permittivity is remarkably increased by increasing PCoN concentration. The maximum value of remnant polarization Pr (25.3 μC/cm2) was obtained for the 0.5PZT–0.5PCoN ceramic.  相似文献   

12.
《Solid State Ionics》2009,180(40):1613-1619
Materials of the LiTi2  xZrx(PO4)3 series (0  x  2) were prepared and characterized by powder X-ray (XRD) and neutron diffraction (ND), 7Li and 31P Nuclear Magnetic Resonance (NMR) and Electric Impedance techniques. In samples with x < 1.8, XRD patterns were indexed with the rhombohedral Rc space group, but in samples with x  1.8, XRD patterns display the presence of rhombohedral and triclinic phases. The Rietveld analysis of the LiTi1.4Zr0.6(PO4)3 neutron diffraction (ND) pattern provided structural information about intermediate compositions. For low Zr contents, compositions deduced from 31P MAS-NMR spectra are similar to nominal ones, indicating that Zr4+ and Ti4+ cations are randomly distributed in the NASICON structure. At increasing Zr contents, differences between nominal and deduced compositions become significant, indicating some Zr segregation in the triclinic phase. The substitution of Ti4+ by Zr4+ stabilizes the rhombohedral phase; however, electrical performances are not improved in expanded networks of Zr-rich samples. Below 300 K, activation energy of all samples is near 0.36 eV; however, above 300 K, activation energy is near 0.23 eV in Ti-rich samples and close to 0.36 eV in Zr-rich samples. The analysis of electrical data suggests that the amount of charge carriers and entropic terms are higher in Zr-rich samples; however, the increment of both parameters does not compensate lower activation energy terms of these samples. As a consequence of different contributions, the bulk conductivity of Zr-rich samples, measured at room temperature, is one order of magnitude lower than that measured in Ti-rich samples.  相似文献   

13.
The effects of 100 MeV Ni ion irradiation on magnetic properties of nanoparticles of Ni0.8Cu0.2Fe2O4 with average particle sizes of 40 Å and 60 Å, synthesized by chemical co-precipitation method have been studied. The spinel cubic structures were confirmed by XRD. The average particle size estimated by XRD and by Langevin function fitting are in good agreement for both the pristine and irradiated samples. The blocking temperature increases with particle size and does not change after irradiation. On irradiation by 100 MeV Ni ions, significant changes in the hysteresis loop features are observed, which may be attributed to formation of cluster of defects in the nanocrystalline samples due to swift heavy ion (SHI) irradiation. It is also found that SHI irradiation produces more dominant changes in the hysteresis loop of smaller particle size of 40 Å as compared to that of 60 Å.  相似文献   

14.
《Solid State Ionics》2006,177(15-16):1371-1380
Three types of cermets based on NiO–ScSZ (A), Ni0.9Mg0.1O–ScSZ (AMg) and Ni0.9Mg0.095Al0.005O–ScSZ (AMgAl) were applied as SOFC anodes. Humidified H2 and simulated biogas (CH4:CO2 = 6:4) were directly supplied to the anode side of SOFC single cell. Catalytic activities for the reforming and the electrochemical reactions were tested in a typical electrochemical measurement setup. When hydrogen (3% H2O) was supplied as a fuel, the three anodes showed almost the same voltage losses (anodic overvoltages) of ca. 40 mV at 400 mA cm 2 at 1000 °C. However, supplying the simulated biogas, AMg and AMgAl showed smaller losses of 25 and 29 mV, respectively, than those in supplying hydrogen, whereas A showed the loss of more than 40 mV. Through this study, it was revealed that when the biogas is selected as a fuel, the electrochemical efficiency of the internal reforming SOFC is enhanced by using AMg or AMgAl as anode materials instead of A. Although the higher performances of AMg and AMgAl mainly result from the stability of small Ni particles against sintering, in addition to this effect, basic (Ni,Mg)O solid solution or MgO existing in the electrocatalysts contributes to further activity enhancement.  相似文献   

15.
A study is made by TEM, XRD and by measuring electrical/magnetic properties, of growth mode and properties of Pt1−xNix alloy films deposited on MgO(0 0 1) at 250°C by dc-sputtering at 2.5–2.7 kV in Ar. A bias voltage Vs≤−160 V was applied to the substrate during deposition. It was confirmed that the Pt film was polycrystalline with the texture of Pt(1 1 1)/MgO(0 0 1) while the films of Pt0.14Ni0.86 and Pt0.19Ni0.81 were epitaxially grown with Pt–Ni(0 0 1)[1 0 0]/MgO(0 0 1)[1 0 0] similarly to the case of Ni/MgO(0 0 1). Thus the growth mode transformation between Pt–Ni(1 1 1)/MgO(0 0 1) and Pt–Ni(0 0 1)/MgO(0 0 1) may be induced at x less than 0.81 for Pt1−xNix alloy films. The temperature coefficient of resistance TCR from 100 to 300 K of Pt0.14Ni0.86 films was estimated to be 0.0044–0.0053 K−1 and saturation magnetization at 300 K to be 1.7–3.2 kG, respectively, while TCR of Pt films was estimated to be 0.0035–0.0048 K−1.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1366-1373
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T = 285 °C) or sonolysis (20 kHz, I = 32 W cm−2, Pac = 0.46 W mL−1, T = 200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4–6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m2 g−1 depending on synthesis conditions. The use of Barrett–Joyner–Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5 %wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.  相似文献   

17.
The pyrochlore Lanthanum Zirconium Oxide, La2Zr2O7 (LZO), has been developed as a potential replacement barrier layer in the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed on Ni–5%W metal tape. The main focus of this research is to ascertain whether: (i) we can further improve the barrier properties of LZO; (ii) we can modify the LZO cation ratio and still achieve a high level of performance; and (iii) it is possible to reduce the number of buffer layers. We report a systematic investigation of the LZO film growth with varying compositions of La:Zr ratio in the La2O3–ZrO2 system. Using a metal–organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of LaxZr1?xOy (x = 0.2–0.6) on standard Y2O3 buffered Ni–5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial LZO phase with only (0 0 1) texture can be achieved in a broad compositional range of x = 0.2–0.6 in LaxZr1?xOy. Both CeO2 cap layers and MOD–YBCO films were grown epitaxially on these modified LZO barriers. High critical currents per unit width, Ic of 274–292 A/cm at 77 K and self-field were achieved for MOD–YBCO films grown on LaxZr1?xOy (x = 0.4–0.6) films. These results indicate that LZO films can be grown with a broad compositional range and still support high performance YBCO coated conductors. In addition, epitaxial MOD LaxZr1?xOy (x = 0.25) films were grown directly on biaxially textured Ni–3W substrates. About 3 μm thick YBCO films grown on a single MOD–LZO buffered Ni–3W substrates using pulsed laser deposition show a critical current density, Jc, of 0.55 MA/cm2 (Ic of 169 A/cm) at 77 K and 0.01 T. This work holds promise for a route for producing simplified buffer architecture for RABiTS based YBCO coated conductors.  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2639-2642
We introduce a newly developed combinatorial electrostatic atomization system, “M-ist Combi,” and demonstrate the effectiveness of the system by establishing a pseudo-ternary Li–Ni–Co oxide phase diagram. After heating the starting materials with compositions in the range of 0.4  Li / (Li + Ni + Co)  0.6 at 973 K for 3 h, the diffraction of all of the products was indexed as single-phase with layer-type hexagonal structures such as LiCoO2 and LiNiO2. As the substitution quantity of Co to the Ni site increased, the value of 2θ shifted to a high-angle. By combining the M-ist Combi system with combinatorial XRD apparatus, we successfully completed the high-throughput sample preparation and phase identification of over 150 samples in one day.  相似文献   

19.
In the present work, La2Zr2O7 (LZO) buffer layers were deposited using pulsed laser deposition (PLD) on various metallic substrates including epitaxial pure Ni on a LaAlO3 (LAO) substrate as well as highly textured Ni–5 at.%W tapes. It is shown that the LZO deposited on pure Ni-buffered LAO exhibits a mixed orientation while LZO on Ni–5 at.%W grows epitaxially. This difference may be explained by the existence of a sulphur superstructure on the surface of Ni–5 at.%W tapes, promoting the epitaxial (0 0 l) nucleation of seed layers. Highly textured YBa2Cu3O7?δ layers were prepared either by using a single buffer layer of LZO or bilayer buffers of CeO2/LZO on Ni–5 at.%W. The superconducting transition temperature (Tc) increases with the LZO thickness, reaching a value of 90 K with a very narrow transition width (1.5 K) for 240 nm thick LZO layers. Inductive Jc measurements at 77 K in self-field show a value of about 0.96 MA/cm2 for the thickest LZO layers, which is comparable to the value observed on standard buffer architectures such as CeO2/YSZ/Y2O3.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号