首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chemisorption of the allylamine molecule, which contains two functional groups (ethenyl and hydroxyl), on a Si(001) ? (2 × 1) surface was studied using density functional theory (ab-initio DFT) based on the pseudopotential approach. In particular, we focused on the determination of the most stable position of the CC double bond in the ethenyl group and observation of the passivation effect of allylamine on the electronic structure of the clean Si(001) ? (2 × 1) phase. For this purpose, all of the possible interaction mechanisms occurring at the interface were considered: (i) dissociative bonding where the CC bond is parallel to the silicon surface, (ii) dissociative bonding where the CC bond is perpendicular to the silicon surface, and (iii) the [2 + 2] CC cycloaddition reaction. From our total energy calculations, it was found that the bifunctional allylamine molecule attached to the Si(001) ? (2 × 1) surface through the amino functional group, by breaking the N–H bond and forming a Si–H bond and Si–NHCH2CHCH2 surface fragments. During this process, the ethenyl functional group remains intact, and so can be potentially used as an extra reactive site for additional chemical interactions. In addition to these findings, the nudged elastic band method (NEB) calculations related with the reaction paths showed that the parallel position of the CC bond with respect to the surface of the substrate is more favorable. In order to see the influence of the chemisorbed allylamine molecule on the surface states of the clean Si(001)  (2 × 1), we also plotted the density of states (DOS), in which it is seen that the clean Si(001)  (2 × 1) surface was passivated by the adsorption of allylamine.  相似文献   

3.
4.
We have studied the formation of Ge(001) c(8 × 2)–Au surfaces on vicinal samples by scanning tunneling microscopy. The vicinal samples are tilted 1° toward [110]. The c(8 × 2)–Au surface is prepared by depositing 0.75 ± 0.05 ML of Au onto a germanium surface held at 800 K. The anisotropy introduced by the atomic steps of the vicinal surface and the preferential etching of SB steps during Au deposition is sufficient to introduce a preferred growth direction for the c(8 × 2)–Au phase. The result is a sample on which 78% of the surface is populated by Au-induced chains oriented parallel to the step direction. These parallel Ge(001) c(8 × 2)–Au domains are separated by single or multiple height DA steps (0.28 nm high).  相似文献   

5.
Molecular Dynamics (MD) simulation techniques have been used to investigate systematically how the length and spacing of poly(ethylene oxide) (PEO) side-chains along a PEO backbone influence ion mobility for two different salt concentrations. This is of fundamental relevance to the design of new polymer electrolytes for battery applications. The salt used has been LiPF6 in concentrations corresponding to Li:EO ratios of 1:30 and 1:10. The MD box contained PEO backbones of 89–343 EO units to which 3, 6, 7, 8, 9 and 15 EO unit side-chains were added. The selected spacings along the backbone between the PEO side-chains attachment points were 5, 10, 15, 20 and 50 EO units. The backbone and all side-chains were methoxy end-capped, and the simulations were all made at 293 K. Ion mobilities have been estimated from the variation of mean-square-displacement with time, and have been analysed in relation to chain dynamics, cross-linking and ion pairing. Comparisons are also made with the results of simulated PEO systems without side-chains and/or without salt. It is found that, at a higher concentration, many short side-chains give the highest ion mobility, while the mobility is highest for side-chain lengths of 7–9 EO units at the lower concentration.  相似文献   

6.
Surface structures of self-assembled methylthiolate and ethylthiolate monolayers on Au(111) have been imaged with STM. For saturation coverage of 0.33 ML at room temperature, the well-known (√3 × √3)R30° phase routinely observed for longer chain alkanethiolates does not appear under any conditions for adsorbed methylthiolate and ethylthiolate. Instead, both thiolate species organize themselves into a well-ordered 3 × 4 structure. We thus conclude that the stable structure for saturation coverage of methylthiolate/ethylthiolate on Au(111) at RT is 3 × 4, not (√3 × √3)R30° as generally believed. For coverage less than 0.33 ML, a striped-phase with short-range order is observed for methylthiolate. Fourier transform of the STM image from the striped-phase produces a clear (√3 × √3)R30° “diffraction” pattern. This strongly indicates that the (√3 × √3)R30° diffraction pattern for methylthiolate monolayers reported in literature is likely from the striped-phase, rather than from a true (√3 × √3)R30° lattice in real space. Consequently, theoretical modeling that reproduces the (√3 × √3)R30° structure for methylthiolate monolayers should be re-examined.  相似文献   

7.
In this report, SrTi(1 ? x)Fe(x)O(3 ? δ) photocatalyst powder was synthesized by a high temperature solid state reaction method. The morphology, crystalline structures of obtained samples, was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. The electronic properties and local structure of the perovskite STFx (0  x  1) systems have been probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The effects of iron doping level x (x = 0–1) on the crystal structure and chemical state of the STFx have been investigated by X-ray photoelectron spectroscopy and the valence band edges for electronic band gaps were obtained for STFx by ultraviolet photoelectron spectroscopy (UPS). A single cubic perovskite phase of STFx oxide was successfully obtained at 1200 °C for 24 h by the solid state reaction method. The XPS results showed that the iron present in the STFx perovskite structure is composed of a mixture of Fe3+ and Fe4+ (SrTi(1 ? x)[Fe3+, Fe4+](x)O(3 ? δ)). When the content x of iron doping was increased, the amount of Fe3+ and Fe4+ increased significantly and the oxygen lattice decreased on the surface of STFx oxide. The UPS data has confirmed that with more substitution of iron, the position of the valence band decreased.  相似文献   

8.
《Current Applied Physics》2010,10(3):771-775
Zn1−xCrxTe (x = 0.05, 0.15) films were grown on GaAs(1 0 0) substrate by thermal evaporation method. X-ray diffraction analysis showed the presence of ZnCrTe phase without any secondary phase. The surface was analyzed by high resolution magnetic force microscope and profile measurements showed orientation of magnetic domains in the range of 0.5–2 nm with increase of Cr content. Magnetic moment–magnetic field measurements showed a characteristic hysteresis loop even at room temperature. The Curie temperature was estimated to be greater than 300 K. From the electron spin resonance spectra, the valence state of Cr in ZnTe was found to be +2 with d2 electronic configuration. Hall effect study was done at room temperature and the result showed the presence of p-type charge carriers and hole concentration was found to increase from 5.95 × 1012 to 6.7 × 1012 m−3 when Cr content increases. We deduce the origin of ferromagnetic behavior based on the observed experimental results.  相似文献   

9.
Akihiro Ohtake 《Surface science》2012,606(23-24):1886-1891
Adsorption of Al atoms on the As-stabilized InAs(001)—(2 × 4) surface induces the formation of the Al-stabilized (2 × 4) reconstruction. The Al-stabilized (2 × 4) surface has mixed In–As dimer at the outermost layer with the Al atoms being incorporated into the subsurface layers. Heating of the Al-stabilized (2 × 4) surface further promotes the diffusion of Al into deeper layers, which results in the formation of the In-rich (4 × 2) structure with the ζa structure.  相似文献   

10.
11.
We have performed a first principle study of structural and phase stabilization of β-La2 ? xLxMo2O9 (L = Gd, Sm, Nd and Bi) and β-La2Mo2 ? yMyO9 (M = Cr, W). The substitutional-site properties were discussed in terms of the empirical parameter, bond valence sums (BVS), which characterizes the interactions between atoms and its nearest-neighbor atoms and correlates well with the stability of the structure. We found that Gd, Sm and Nd atoms prefer the crystallographic sites with largest BVS values. The nonlinear dependence of cell parameter on W content in W-doped systems results from the nonlinear change in Mo/W–O bond length with W content. The decrease of cohesive energy and the deviation of BVS values from the expected values upon the Gd, Sm, Nd and W-doped concentration help us understand the experimentally observed stabilization of the β phase to lower temperatures in these doped system. The O ion diffusion properties in W-doped systems have been studied using the nudged elastic band method and the dimer method. We found that, W-doping leads to the obvious increase in the energy barriers of O ion concerted diffusion. In addition, there is a remarkable decrease in the difference of energy barriers between two diffusion channels involving O(1) ion, which sheds light on only one relaxation peak in the mechanical relaxation measurement in W-doped system, compared to undoped system.  相似文献   

12.
Annealing effects of FeSe1?xTex (0.6  x  1) single crystals have been investigated from measurements of the powder X-ray diffraction and specific heat. Through the annealing, several peaks of powder X-ray diffraction have become sharp and a clean jump of the specific-heat at the superconducting (SC) transition temperature, Tc, has been observed for x = 0.6–0.9, indicating bulk superconductivity. For annealed single-crystals of x = 0.6–0.8, the SC condensation energy, U0, and the SC gap, Δ0, at 0 K have been estimated as ~1.8 J/mol and 2.3–2.5 meV, respectively. The value of 2Δ0/kBTc is 3.9–4.5, indicating a little strong-coupling superconductivity. Both the electronic specific-heat coefficient in the normal state, γn, and the residual electronic specific-heat coefficient in the SC state, γ0, have been found to show significant x dependence. The values of γn are much larger than those estimated from the band calculation.  相似文献   

13.
(Mg1 ? xFex)1 ? δO (x = 0.01–0.43) single crystals (~ 8 mm in diameter) were made by a melt-growth method. Electrical conductivity measurements were carried out as functions of temperature and frequency by a complex impedance method under pressure (~ 43 GPa and ~ 673 K and at 0.1 MPa and ~ 1400 K). Our experimental results show a change in charge transport mechanism in the (Mg1 ? xFex)1 ? δO solid solution at high temperature. The temperature of inflection point of the slope in Arrhenius plots depend greatly on both composition and extrinsic factors of crystals. The low-temperature conduction mechanism in (Mg1 ? xFex)1 ? δO solid solution is small polaron. Pressure effect of the electric conductivity was observed and the conductivity increased to 0.5 at log scale of S/m with increasing pressure up to 43.4 GPa. The activation energy was decreased linearly with increasing pressure. Chemical composition and homogeneity of specimen rather than pressure greatly influence the electric conductivity. The activation energy of 2.37(4) eV for the (Mg0.99Fe0.01)1 ? δO solid solution might correspond to a migration enthalpy of O ions through thermally formed defects. It is proposed that a possible dominant electrical conduction mechanism in ferropericlase under the lower mantle conditions, at least in the higher temperature region, is super ionic conduction.  相似文献   

14.
《Surface science》2003,470(1-2):9-18
First principles total energy studies are performed to investigate the energetics, and the atomic structure of the adsorption of germane (GeH4), and digermane (Ge2H6) on the Si(0 0 1)-c(2 × 4) surface. It has been observed experimentally that adsorption of Ge2H6 is a dissociative process, which first yields GeH3 and then GeH2 fragments as products. We first study the adsorption of GeH2 considering two different models; the intra-row and the on-dimer geometries. Our results show that the on-dimer site is more stable than the intra-row geometry by 0.44 eV. This is not a surprise since in the absence of H atoms, adsorption in the on-dimer site leaves no dangling bonds. In contrast, when the GeH2 fragment is considered together with two H atoms, the intra-row geometry is favored energetically as compared with the on-dimer site, in good agreement with experiment. Similar results have been previously obtained for the adsorption of SiH2 on Si(0 0 1). Digermane adsorption is explored according to two different geometries. In the first one, we have considered the adsorption as two GeH3 fragments, while in the second, we have considered the adsorption as two GeH2 fragments plus 2 H fragments. In good agreement with experiments, it is found that the latter geometry is energetically more favorable.  相似文献   

15.
The superconducting R1.4Ce0.6RuSr2Cu2O10  δ(R = Sm, Eu and Gd) withTc  28, 32 and 42 K are also magnetically ordered atTN  220, 122 and 180 K, respectively, thus,TN  Tc. This is in contrast to intermetallic magnetic superconductors (such as RNi2B2C) in whichTc  TN. Magnetic susceptibility and Mossbauer spectroscopy show that superconductivity is confined to the CuO2planes, whereas magnetism is due to the Ru sublattice. Irreversibility phenomena and magnetic anomalies, observed at low magnetic fields originate from antisymmetric exchange coupling of the Dzyaloshinsky–Moria type, and from spin reorientation of the Ru moments. The shielding fraction is about 100%, supporting the conclusion that the materials consist of a single phase, manifesting both magnetism and superconductivity at once.  相似文献   

16.
In the present work, the X-ray intensity ratios, ILk/I (k = l, β, γ1,5, γ2,3, γ4), have been measured for different compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2, and the 66Dy metallic foil by tuning the incident photon energies across its Li (i = 1–3) absorption-edge energies covering the region 7.8–10 keV in order to investigate the influence of chemical effects on these intensity ratios in the presence of the many-body effects, which become significant at photon energies in proximity to the Li absorption-edge energies. The present measured intensity ratios ILk/I have been compared with two sets of values calculated using the nonrelativistic Hartree–Fock–Slater model-based Li (i = 1–3) subshell photoionization cross sections, the Dirac–Fock model-based X-ray emission rates, and two sets of the fluorescence and Coster–Kronig yields. The L3 absorption-edge energy of 66Dy in its different compounds and metallic foil has been deduced from the XANES spectra recorded in the present work. The L3 absorption-edge energy shifts obtained from these absorption-edge energies are found to increase linearly with the partial charge on the metal atom (66Dy).  相似文献   

17.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

18.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

19.
《Surface science》1993,289(3):L631-L637
The Na/Si(100)2 × 1 interface is studied by both ab initio local density functional total energy DMol molecular calculations using very large cluster models and photoemission EXAFS which provides the unique feature of probing both Na adsorbate and Si substrate environments. Theoretical and experimental bond lengths are found to be in very good agreement and enable a definite assignment of the adsorption site: Na is adsorbed on a single site, the cave, with no Na-Na distance consistent with any “double layer” models. The growth and existence of a second Na layer are shown to occur only in presence of very low level impurities.  相似文献   

20.
《Surface science》1988,199(3):L413-L418
We have measured the energy of the σ shape resonance for a saturated (2 L) coverage of CO on Ni(001) by observation of both the carbon 1s direct emission and the carbon Auger emission. Both measurements were performed on the same sample at the same time with a carefully calibrated monochromator. Although a previous angle-resolved study of the carbon 1s direct emission set the σ resonance at 311 eV, it is clearly seen in both of our measurements near hv = 303 eV, in agreement with previous results using Auger emission. Since shape resonances may be used to determine bond lengths, resolution of this issue has important implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号