首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
2.
The objective of this article is to derive a macroscopic Darcy’s law for a fluid-saturated moving porous medium whose matrix is composed of two solid phases which are not in direct contact with each other (weakly coupled solid phases). An example of this composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the pore space. The macroscopic equations for this type of saturated porous material are obtained using two-space homogenization techniques from microscopic periodic structures. The pore size is assumed to be small compared to the macroscopic scale under consideration. At the microscopic scale the two weakly coupled solids are described by the linear elastic equations, and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid flow equation obtained using a phenomenological approach is given. Moreover, a constructive proof of the existence of the three permeability tensors allows for their explicit computation employing finite elements or analogous numerical procedures.  相似文献   

3.
A novel model is presented for estimating steady-state co- and counter-current relative permeabilities analytically derived from macroscopic momentum equations originating from mixture theory accounting for fluid–fluid (momentum transfer) and solid–fluid interactions (friction). The full model is developed in two stages: first as a general model based on a two-fluid Stokes formulation and second with further specification of solid–fluid and fluid–fluid interaction terms referred to as \(R_{{i}}\) (i =  water, oil) and R, respectively, for developing analytical expressions for generalized relative permeability functions. The analytical expressions give a direct link between experimental observable quantities (end point and shape of the relative permeability curves) versus water saturation and model input variables (fluid viscosities, solid–fluid/fluid–fluid interactions strength and water and oil saturation exponents). The general two-phase model is obeying Onsager’s reciprocal law stating that the cross-mobility terms \(\lambda _\mathrm{wo}\) and \(\lambda _\mathrm{ow}\) are equal (requires the fluid–fluid interaction term R to be symmetrical with respect to momentum transfer). The fully developed model is further tested by comparing its predictions with experimental data for co- and counter-current relative permeabilities. Experimental data indicate that counter-current relative permeabilities are significantly lower than corresponding co-current curves which is captured well by the proposed model. Fluid–fluid interaction will impact the shape of the relative permeabilities. In particular, the model shows that an inflection point can occur on the relative permeability curve when the fluid–fluid interaction coefficient \(I>0\) which is not captured by standard Corey formulation. Further, the model predicts that fluid–fluid interaction can affect the relative permeability end points. The model is also accounting for the observed experimental behavior that the water-to-oil relative permeability ratio \(\hat{{k}}_{\mathrm{rw}} /\hat{{\mathrm{k}}}_{\mathrm{ro}} \) is decreasing for increasing oil-to-water viscosity ratio. Hence, the fully developed model looks like a promising tool for analyzing, understanding and interpretation of relative permeability data in terms of the physical processes involved through the solid–fluid interaction terms \(R_{{i}}\) and the fluid–fluid interaction term R.  相似文献   

4.
The interface between soil and structure can be referred to as a soil-structure system, and its behavior plays an important role in many geotechnical engineering practices. In this study, results are presented from a series of monotonic direct shear tests performed on a sand-structure interface under constant normal stiffness using the discrete element method (DEM). Strain localization and dilatancy behavior of the interface is carefully examined at both macroscopic and microscopic scales. The effects of soil initial relative density and normal stress on the interface shear behavior are also investigated. The results show that a shear band progressively develops along the structural surface as shear displacement increases. At large shear displacement a unique relationship between stress ratio and void ratio is reached in the shear band for a certain normal stress, indicating that a critical state exists in the shear band. It is also found that the thickness and void ratio of the shear band at the critical state decreases with increasing normal stress. Comparison of the DEM simulation results with experimental results provides insight into the shear behavior of a sand-structure interface and offers a means for quantitative modeling of such interfaces based on the critical state soil mechanics.  相似文献   

5.
In part I (Lima et al., Transp Porous Media, 2009), a three-scale model governing the movement of an aqueous saline solution containing four monovalent species (Na+, H+, Cl?, OH?) in kaolinite clays was derived. Unlike purely macroscopic approaches, the novelty of the formulation relied on the double averaging of the nanoscopic electro- chemistry of particle/electrolyte solution interface ruled by the electrical double layer coupled with protonation/deprotonation reactions. The passage from the nano to the micro (pore)-scale gave rise to ion-sorbed concentrations and slip velocity at the solid/fluid interface which are coupled with the microscopic Stokes problem and Nernst–Planck equations governing the hydrodynamics and ion transport in the micropores. Application of a formal homogenization procedure led to macroscopic governing equations with effective electro-chemical parameters, such as retardation coefficients, electro-osmotic permeability, and electric conductivity. In this study, we reconstruct the constitutive laws of the macroscopic coefficients by solving the nano and microscopic closure problems. New generalized isotherms for Na+ and H+ ? OH? sorption are build-up based on a perturbation approach and the limitations of classical Freundlich isotherm for modeling ion sorption at the solid/fluid interface are discussed. The macroscopic governing equations are discretized by the finite volume method and numerical simulations of a transient electroosmosis experiment for desalination of a clay sample by electrokinetics are presented.  相似文献   

6.
7.
The flow of a viscous fluid through a porous matrix undergoing only infinitesimal deformation is described in terms of intrinsic variables, namely, the density, velocity and stress occurring in coherent elements of each material. This formulation arises naturally when macroscopic interfaces are conceptually partitioned into area fractions of fluid–fluid, fluid–solid, and solid–solid contact. Such theory has been shown to yield consistent jump conditions of mass, momentum and energy across discontinuities, either internal or an external boundary, unlike the standard mixture theory jump conditions. In the previous formulation, the matrix structure has been considered isotropic; that is, the area fractions are independent of the interface orientation. Here, that is not assumed, so in particular, the cross-section area of a continuous fluid tube depends on its orientation, which influences the directional fluxes, and in turn the directional permeability, anisotropy of the structure. The simplifications for slow viscous flow are examined, and particularly for an isotropic linearly elastic matrix in which area partitioning induces anisotropic elastic response of the mixture. A final specialization to an incompressible fluid and stationary matrix leads to potential flow, and a simple plane flow solution is presented to illustrate the effects of anisotropic permeability.  相似文献   

8.
Shabana  Ahmed A.  Zhang  Dayu 《Nonlinear dynamics》2020,100(2):1497-1517

The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the position gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shown that continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials.

  相似文献   

9.
A development is provided showing that for any phase, by not neglecting the macroscopic terms of the deviation from the intensive momentum and of the dispersive momentum, we obtain a macroscopic secondary momentum balance equation coupled with a macroscopic dominant momentum balance equation that is valid at a larger spatial scale. The macroscopic secondary momentum balance equation is in the form of a wave equation that propagates the deviation from the intensive momentum while concurrently, in the case of a Newtonian fluid and under certain assumptions, the macroscopic dominant momentum balance equation may be approximated by Darcys equation to address drag dominant flow. We then develop extensions to the dominant macroscopic Navier–Stokes (NS) equation for saturated porous matrices, to account for the pressure gradient at the microscopic solid-fluid interfaces. At the microscopic interfaces we introduce the exchange of inertia between the phases, accounting for the relative fluid square velocities and the rate of these velocities, interpreted as Forchheimer terms. Conditions are provided to approximate the extended dominant NS equation by Forchheimer quadratic momentum law or by Darcys linear momentum law. We also show that the dominant NS equation can conform into a nonlinear wave equation. The one-dimensional numerical solution of this nonlinear wave equation demonstrates good qualitative agreement with experiments for the case of a highly deformable elasto-plastic matrix.  相似文献   

10.
11.
A pore scale analysis is implemented in this numerical study to investigate the behavior of microscopic inertia and thermal dispersion in a porous medium with a periodic structure. The macroscopic characteristics of the transport phenomena are evaluated with an averaging technique of the controlling variables at a pore scale level in an elementary cell of the porous structure. The Darcy–Forchheimer model describes the fluid motion through the porous medium while the continuity and Navier–Stokes equations are applied within the unit cell. An average energy equation is employed for the thermal part of the porous medium. The macroscopic pressure loss is computed in order to evaluate the dominant microscopic inertial effects. Local fluctuations of velocity and temperature at the pore scale are instrumental in the quantification of the thermal dispersion through the total effective thermal diffusivity. The numerical results demonstrate that microscopic inertia contributes significantly to the magnitude of the macroscopic pressure loss, in some instances with as much as 70%. Depending on the nature of the porous medium, the thermal dispersion may have a marked bearing on the heat transfer, particularly in the streamwise direction for a highly conducting fluid and certain values of the Peclet number.  相似文献   

12.
对铝-铝同质金属爆炸焊接进行系列实验,研究不同装药比条件下焊接界面的变化特征。所得试件的金相照片表明,焊接界面均具有宏观波状,但其细观形貌又不同于文献报导的连续性波状界面。本次实验得到的三种界面随装药不同而分别呈正弦曲线型、点线型及纯点型,且后两者不再连续。最后利用爆轰波与金属壳表面相互作用理论进行分析,认为焊接界面细观形貌由射流厚度及堆积特征决定,其中界面连续性类似于水流连续性对流量的依赖,当射流厚度不足时难以形成连续界面。  相似文献   

13.
An important development in Particle Technology is directed towards tailored product properties, i.e. product engineering. Product properties are strongly related to the disperse properties of the particles, i.e. their size, shape, morphology and surface. We discuss some general applicable principles in product engineering and give various examples. Strongly related to this approach are methods to characterize and to tailor product and particle properties. For systems which are controlled by the interfaces (e.g. particles in the micron size range and below) we apply a multi-scale approach from the particulate interfaces over particle interactions to the macroscopic properties. Thus, we tailor macroscopic product properties through microscopic control of the interfaces. This approach must be complemented by methods to characterize particle and product properties. It is shown that by careful consideration of the underlying physical processes considerable progress can be achieved.  相似文献   

14.

Multiphase flow in porous media is strongly influenced by the pore-scale arrangement of fluids. Reservoir-scale constitutive relationships capture these effects in a phenomenological way, relying only on fluid saturation to characterize the macroscopic behavior. Working toward a more rigorous framework, we make use of the fact that the momentary state of such a system is uniquely characterized by the geometry of the pore-scale fluid distribution. We consider how fluids evolve as they undergo topological changes induced by pore-scale displacement events. Changes to the topology of an object are fundamentally discrete events. We describe how discontinuities arise, characterize the possible topological transformations and analyze the associated source terms based on geometric evolution equations. Geometric evolution is shown to be hierarchical in nature, with a topological source term that constrains how a structure can evolve with time. The challenge associated with predicting topological changes is addressed by constructing a universal geometric state function that predicts the possible states based on a non-dimensional relationship with two degrees of freedom. The approach is validated using fluid configurations from both capillary and viscous regimes in ten different porous media with porosity between 0.10 and 0.38. We show that the non-dimensional relationship is independent of both the material type and flow regime. We demonstrate that the state function can be used to predict history-dependent behavior associated with the evolution of the Euler characteristic during two-fluid flow.

  相似文献   

15.
A number of environmental and petroleum engineering applications involve the coexistence of three non-miscible fluids. In this work, basic constitutive relations and computational schemes are developed in order to simulate fluid injection and imbibition processes in a deformable rock through the finite element method. For this purpose, the following ingredients are worked out: (i) simple, but general formulas for the effective saturations; (ii) constitutive expressions for the relative permeabilities of water, oil and gas in terms of effective saturations; and (iii) constitutive capillary pressure relationships. These ingredients are introduced in a domestic finite element code where the primary variables are the solid displacement vector and the three fluid pressures. Given the abundance of experimental data in the petroleum engineering field, the whole framework is firstly tested by simulating gas injection into a rock core sample initially saturated by water and oil. Sensitivity analyses are performed upon varying key constitutive, loading and numerical parameters, to assess the physical and computational outputs of the proposed framework. Particular attention is given to the influence on the model predictions of several expressions defining relative permeabilities. Simulations of water-alternated-gas injection and of counter-current water imbibition tests are also performed, to establish the reliability of the proposed constitutive and computational framework.  相似文献   

16.
Some aspects of the problem of the stability and the nature of the secondary regimes of a plane two-layer Poiseuille flow of viscous dielectric fluids between horizontal electrodes with a constant potential difference are considered. A linear analysis shows that the electrostatic field can induce the growth of perturbations with an asymptotically small wavenumber when the dielectric permeabilities of the fluids are different. On the assumption that the perturbation wavelength is large as compared with the thickness of one of the layers and comparable with the thickness of the other in order of magnitude, one of the possible mechanisms of development of finite fluctuations is investigated. Within the framework of this mechanism the initial mathematical mdoel can be reduced to an integrodifferential evolutionary Kuramoto-Sivashinsky-type equation describing the behavior of the fluid interface. The periodic solutions of this equation, which are investigated numerically, are bounded and fairly diverse. Krasnoyarsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 45–55, March–April, 2000.  相似文献   

17.
After recalling the constitutive equations of finite strain poroelasticity formulated at the macroscopic level, we adopt a microscopic point of view which consists of describing the fluid-saturated porous medium at a space scale on which the fluid and solid phases are geometrically distinct. The constitutive equations of poroelasticity are recovered from the analysis conducted on a representative elementary volume of porous material open to fluid mass exchange. The procedure relies upon the solution of a boundary value problem defined on the solid domain of the representative volume undergoing large elastic strains. The macroscopic potential, computed as the integral of the free energy density over the solid domain, is shown to depend on the macroscopic deformation gradient and the porous space volume as relevant variables. The corresponding stress-type variables obtained through the differentiation of this potential turn out to be the macroscopic Boussinesq stress tensor and the pore pressure. Furthermore, such a procedure makes it possible to establish the necessary and sufficient conditions to ensure the validity of an ‘effective stress’ formulation of the constitutive equations of finite strain poroelasticity. Such conditions are notably satisfied in the important case of an incompressible solid matrix.  相似文献   

18.
In Part I Moyne and Murad [Transport in Porous Media 62, (2006), 333–380] a two-scale model of coupled electro-chemo-mechanical phenomena in swelling porous media was derived by a formal asymptotic homogenization analysis. The microscopic portrait of the model consists of a two-phase system composed of an electrolyte solution and colloidal clay particles. The movement of the liquid at the microscale is ruled by the modified Stokes problem; the advection, diffusion and electro-migration of monovalent ions Na+ and Cl are governed by the Nernst–Planck equations and the local electric potential distribution is dictated by the Poisson problem. The microscopic governing equations in the fluid domain are coupled with the elasticity problem for the clay particles through boundary conditions on the solid–fluid interface. The up-scaling procedure led to a macroscopic model based on Onsager’s reciprocity relations coupled with a modified form of Terzaghi’s effective stress principle including an additional swelling stress component. A notable consequence of the two-scale framework are the new closure problems derived for the macroscopic electro-chemo-mechanical parameters. Such local representation bridge the gap between the macroscopic Thermodynamics of Irreversible Processes and microscopic Electro-Hydrodynamics by establishing a direct correlation between the magnitude of the effective properties and the electrical double layer potential, whose local distribution is governed by a microscale Poisson–Boltzmann equation. The purpose of this paper is to validate computationally the two-scale model and to introduce new concepts inherent to the problem considering a particular form of microstructure wherein the clay fabric is composed of parallel particles of face-to-face contact. By discretizing the local Poisson–Boltzmann equation and solving numerically the closure problems, the constitutive behavior of the diffusion coefficients of cations and anions, chemico-osmotic and electro-osmotic conductivities in Darcy’s law, Onsager’s parameters, swelling pressure, electro-chemical compressibility, surface tension, primary/secondary electroviscous effects and the reflection coefficient are computed for a range particle distances and sat concentrations.  相似文献   

19.
Multiphase lattice Boltzmann methods are known to generate spurious or parasitic currents at the fluid–fluid interfaces. This nonphysical phenomenon has to be avoided, or at least controlled, in order to achieve reliable solutions. In this article, a method to control these fictitious velocities via lattice refinement is proposed, which is based on interface thickness control for which both the spurious currents and the physical fluid–fluid interface thickness vanishes as the spatial resolution increases. It has been found that a proper interface thickness adjustment is required as the lattice refinement is applied, or an increase in spurious currents, instead of a reduction, can occur. By combining the new method with an appropriate multiphase flow initialization, the overall stability for high density O(1000) and viscosity O(100) ratios is greatly improved. Although this research has been conducted with a Rothman and Keller type lattice Boltzmann model, it is believed that other types of multiphase lattice Boltzmann models could benefit from the basic ideas underlying this research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号