首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the structural, magnetic, and magnetotransport characteristics of Cr-doped indium tin oxide (ITO) films grown on SiO2/Si substrates by pulsed laser deposition. Structural analysis clearly indicates that homogeneous films of bixbyite structure are grown without any detectable formation of secondary phases up to 20 mol% Cr doping. The carrier concentration is found to decrease with Cr ion addition, displaying a change in the conduction type from n-type to p-type around 15 mol% Cr doping. Room temperature ferromagnetism is observed, with saturation magnetization of ∼0.7 emu/cm3, remnant magnetization of ∼0.2 emu/cm3 and coercive field of ∼30 Oe for 5 mol% Cr-doped ITO. Magnetotransport measurements reveal the unique feature of diluted magnetic semiconductors, in particular, an anomalous Hall effect governed by electron doping, which indicates the intrinsic nature of ferromagnetism in Cr-doped ITO. These results suggest that Cr-doped ITO could be promising for semiconductor spin electronics devices.  相似文献   

2.
We studied the structure and magnetic properties of co-sputtered Co1−xCx thin films using a transmission electron microscope (TEM) and a SQUID magnetometer. These properties were found to depend critically on deposition temperature, TS, and composition, x. Generally, phase separation into metallic Co and graphite-like carbon phases proceeds with increasing TS and decreasing x. Plan view and cross-sectional TEM images of the films prepared showed that Co grains about 10–20 nm in diameter and 30–50 nm in height are three-dimensionally separated by graphite-like carbon layers 1–2 nm thick. Optimum magnetic properties with saturation magnetization of 380 emu/cc and coercivity of 400 Oe were obtained for a film with x=0.5 and TS=350°C.  相似文献   

3.
Multilayers composed of Fe and MgF2 with layer thicknesses between 9 Å and 100 Å and of 30 Å, respectively, were prepared with an ultrahigh-vacuum deposition technique. Medium-angle X-ray data show that the Fe layers in the BCC phase have considerable (1 1 0) texture. Periodicity due to multilayered structures was confirmed by a small-angle X-ray diffraction study and cross-section transmission electron microscope for films with Fe layer thicknesses >45 Å. In an Fe/MgF2(9 Å/30 Å) sample, an island structure for the Fe layers was suggested by the existence of superparamagnetism in a film. At 4.2 K, enhancements of both magnetization and hyperfine field were observed in films having Fe layers thinner than 40 Å. The maxima in the magnetization (233 emu/g of Fe) and in the average hyperfine field (390 kOe) at 4.2 K were found in an Fe/MgF2(9 Å/30 Å) film and were approximately 105% and 115% that of the bulk α-Fe, respectively. The thickness dependence suggests a 12% enhancement in the magnetic moment of interface Fe atoms. No exchange bias was found in the films, implying that antiferromagnetic fluorides are not formed at the interface, which is different from the case of Fe/LiF and Fe/CaF2 multilayers.  相似文献   

4.
The role of localized defects as they pertain to ferromagnetism in SiC, which contains only s and p electrons, is important but unclear. Here, room temperature, macroscopic magnetization is induced and can be tuned in 6H-SiC using 14N+ ion implantation. First-principles density functional theory computation results confirm that 14N+ ion implantation can enhance the ferromagnetic ordering of the local magnetic moments caused by vacancy and substitution defects. The calculated magnetization values in the energetically favored ferromagnetic ordering (1.47–2.93 emu/g for several vacancy and substitution defects) are larger than our experimental values (0.25 emu/g at 5 K and 0.08 emu/g at 300 K), but the result is qualitatively in agreement.  相似文献   

5.
Cobalt (Co) nanocapsules coated with boron nitride (BN) layers were synthesized by annealing of ammine complex. KBH4 and [Co(NH3)6]Cl3 were used as starting materials, and annealed these powders at 500–1000 °C with flowing nitrogen gas. Formation of fcc-Co nanocapsules coated with BN layers was observed from X-ray diffraction patterns and high-resolution electron microscopy. Particle size of fcc-Co prepared at 1000 °C with flowing 100 sccm N2 gas was approximately 40 nm, and the values of saturation magnetization and coercivity were 74.5 emu/g and 88 Oe, respectively. Good oxidation- and wear-resistances were obtained by encapsulating Co nanoparticles with BN layers.  相似文献   

6.
We have investigated the exchange bias effect in micron-sized ferromagnetic wires made from Co and Ni80Fe20 films. The wires were fabricated using optical lithography, metallization by sputtering and lift-off technique. Magnetotransport measurements were performed at temperatures ranging from 3 to 300 K. We observed marked changes in the magnetoresistance (MR) properties as the temperature is varied. At 300 K, the field at which the sharp peak occurs corresponding to the magnetization reversal of the Co wires is 167 Oe and is symmetrical about the origin. As the temperature was decreased to 3 K, we observed a shift in the peak positions of the MR characteristics for both the forward and reverse field sweeps corresponding to a loop shift of 582 Oe in the field axis. The asymmetric shift in the MR loops at low temperatures clearly indicates the exchange bias between ferromagnetic (Co) and antiferromagnetic parts (Co-oxide at the surfaces) from natural oxidation. Ni80Fe20 wires of the same geometry showed similar effect with a low exchange bias field. The onset of exchange biasing effect is found to be 70 and 15 K for the Co and Ni80Fe20 wires, respectively. A striking effect is the existence of exchange biasing effect from the sidewalls of the wires even when the wires were capped with Au film.  相似文献   

7.
Ni–Zn ferrite powders were successfully synthesized by microwave-induced combustion process. The process takes only a few minutes to obtain calcined Ni–Zn ferrite powders. The resultant powders were investigated by XRD, SEM, VSM, TG/DTA and surface area measurements. The as-received product shows the formation of cubic ferrite with saturation magnetization (Ms)≈23 emu/g, whereas upon annealing at 850°C for 4 h, the saturation magnetization (Ms) increased to ≈52 emu/g.  相似文献   

8.
The changes of magnetic properties with annealing temperature were studied in the amorphous Fe86.7Zr3.3B4Ag6 thin film. The thin films were deposited by a DC magnetron sputtering method, annealed at 300–700°C for 1 h in vacuum under a field of 1.5 kOe parallel to the film plane, and then furnace-cooled. As a result, it has been found that the Ag addition to Fe–Zr–B amorphous thin films resulted in the decrease of crystallization temperature to 400°C due to promoted crystallization ability. Also, it gave rise to formation of fine BCC α-Fe crystalline precipitates with a grain size smaller than 10 nm in the amorphous matrix near 400°C, and led to prominent enhancement in the magnetic properties of the Fe86.7Zr3.3B4Ag6 thin films. Significantly, excellent magnetic properties such as a saturation magnetization of 1.7 T, a coercive force of 1 Oe and a permeability of 7800 at 50 MHz were obtained in the amorphous Fe86.7Zr3.3B4Ag6 thin film containing 7.2 nm-size BCC α-Fe, which was annealed at 400°C. Also, core loss of 1.4 W cm−3 (Bm=0.1 T) at 1 MHz in the thin film was obtained, and it is a much lower value than had been obtained in any existing soft magnetic materials. Such excellent properties are inferred to originate from the uniform dispersion of nano-size BCC α-Fe in the amorphous matrix.  相似文献   

9.
Nanocrystalline cerium oxide (CeO2) thin films were deposited onto the fluorine doped tin oxide coated glass substrates using methanolic solution of cerium nitrate hexahydrate precursor by a simple spray pyrolysis technique. Thermal analysis of the precursor salt showed the onset of crystallization of CeO2 at 300 °C. Therefore, cerium dioxide thin films were prepared at different deposition temperatures from 300 to 450 °C. Films were transparent (T ~ 80%), polycrystalline with cubic fluorite crystal structure and having band gap energy (Eg) in the range of 3.04–3.6 eV. The different morphological features of the film obtained at various deposition temperatures had pronounced effect on the ion storage capacity (ISC) and electrochemical stability. The larger film thickness coupled with adequate degree of porosity of CeO2 films prepared at 400 °C showed higher ion storage capacity of 20.6 mC cm? 2 in 0.5 M LiClO4 + PC electrolyte. Such films were also electrochemically more stable than the other studied samples. The Ce4+/Ce3+ intervalancy charge transfer mechanism during the bleaching–lithiation of CeO2 film was directly evidenced from X-ray photoelectron spectroscopy. The optically passive behavior of the CeO2 film (prepared at 400 °C) is affirmed by its negligible transmission modulation upon Li+ ion insertion/extraction, irrespective of the extent of Li+ ion intercalation. The coloration efficiency of spray deposited tungsten oxide (WO3) thin film is found to enhance from 47 to 53 cm2 C? 1 when CeO2 is coupled with WO3 as a counter electrode in electrochromic device. Hence, CeO2 can be a good candidate for optically passive counter electrode as an ion storage layer.  相似文献   

10.
Iron-doped nickel oxide (Fe0.01Ni0.99O, abbreviated as FNO) nanoparticles were prepared by sol–gel process using 1,3-propanediol as a solvent and also as a chelating agent, and calcined at the various temperatures (400–1000 °C) for 2 h. The phase composition and the microstructure of the calcined products were investigated by X-ray diffraction and scanning electron microscopy techniques, respectively. Magnetic properties were measured at room temperature using a vibrating sample magnetometer. All calcined samples showed the single phase of FNO cubic rock-salt structure without the presence of any impurity phases. The crystallite size from XRD and particle size from SEM increased as calcining temperature increased. The FNO powders calcined at 400?600 °C revealed the uniform and dense spherical particles in nanosize. The room-temperature ferromagnetism was observed for all samples. When the calcining temperature was increased, the saturation magnetization decreased whereas the coercivity increased, corresponding to the less dense and larger particles. The calcined sample at 400 °C had the best magnetic properties with the highest Ms of 5.34 emu/g (at 10 kOe) and the lowest Hc of 372 Oe.  相似文献   

11.
In2O3 films have been deposited using chemical spray pyrolysis technique at different substrate temperatures that varied in the range, 250–450 °C. The structural and morphological properties of the as-deposited films were studied using X-ray diffractometer and scanning electron microscope as well as atomic force microscope, respectively. The films formed at a temperature of 400 °C showed body-centered cubic structure with a strong (2 2 2) orientation. The structural parameters such as the crystallite size, lattice strain and texture coefficient of the films were also calculated. The films deposited at a temperature of 400 °C showed an optical transmittance of >85% in the visible region. The change of resistivity, mobility, carrier concentration and activation energies with the deposition temperature was studied. The highest figure of merit for the layers grown at 400 °C was 1.09 × 10−3 Ω−1.  相似文献   

12.
《Current Applied Physics》2010,10(2):655-658
We have quantitatively investigated the Hall effect in [Co, CoFe/Pt] multilayer films. The [Co, CoFe/Pt] multilayers exhibit large spontaneous Hall resistivity (ρH) and Hall angle (ρH/ρ). Even though the Hall resistivity in [Co, CoFe/Pt] multilayer films (2.7–4 × 10−7 Ω cm) is smaller than that of amorphous RE–TM alloy films which show large spontaneous Hall resistivity (<2 × 10−6 Ω cm), the Hall angle of multilayer (6–8%) is almost twice than that in amorphous rare earth–transition metal alloy films (∼3%). The Hall angle provides evidence of the effects of the exchange interaction of the Hall scattering. The exchange is between conduction electron spins and the localized spins of the transition metal. The large Hall angle of [Co, CoFe/Pt] multilayer can be considered due to the high spin polarization and high Curie temperature of Co and CoFe transition metal layers. Even though the role of interfaces and surfaces in the magnetic properties of multilayer films may dominate that of the bulk, the Hall effects in [Co, CoFe/Pt] multilayer may be mainly dominated by the bulk effect.  相似文献   

13.
Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 °C for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (0 0 2) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 °C and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ∼3.35 eV and the electrical resistivity was found to be high, ∼104 Ω cm. The films deposited at higher temperatures (>350 °C) showed ferromagnetic behaviour at 10 K.  相似文献   

14.
Strontium hexaferrite nanoparticles are prepared by the chemical sol–gel route. Specific saturation magnetization σs and coercive field strength Hc are determined depending on the heat treatment of the gel and iron/strontium ratio in the starting solution. These ultrafine powders with single-domain behavior have specific saturation magnetization σs=74 emu/g and coercive field strength Hc=6.4 kOe. Experimental results show that it is necessary to preheat the gel between 400 and 500°C for several hours . It can prevent the formation of intermediate γ-Fe2O3 and help to obtain ultrafine strontium ferrite single phase with narrow size distribution at a low annealing temperature. Additionally, the magnetic properties of sol–gel derived strontium ferrite with iron substituted by Zn2+, Ti4+ and Ir4+ are discussed. For an amount of substitution 0<x⩽0.6, the (Zn, Ti)x substituted strontium ferrite shows higher values of both coercive field strength and saturation magnetization than the (Zn, Ir)x substituted phase.  相似文献   

15.
Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni3Pt, NiPt, and NiPt3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200–400°C) exhibit growth-induced properties similar to Co–Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co–Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co–Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.  相似文献   

16.
Mn–N co-doped ZnO films with wurtzite structure were fabricated by RF magnetron sputtering together with the ion-implantation technique. Then a post-annealing at 650 °C for 10 min in a N2 atmosphere was performed to activate the implanted N+ ions and recover the crystal quality, and a p-type ZnO:Mn–N film with a hole concentration of about 2.1×1016 cm?3 was obtained. It is found that the Mn mono-doped ZnO film only exhibits paramagnetic behavior, while after N+-implantation, it shows ferromagnetism at 300 K, and the magnetization of the ZnO:Mn–N films can be further enhanced by thermal annealing due to the activation of the N acceptors. Our experimental results confirm that the codoping N acceptors are favorable for ferromagnetic ordering of Mn2+ ions in ZnO, which is consistent with the recent theoretical calculations.  相似文献   

17.
《Current Applied Physics》2010,10(3):790-796
CdO and Al-doped CdO nano-crystalline thin films have been prepared on glass at 300 °C substrate temperature by spray pyrolysis. The films are highly crystalline with grain size (18–32 nm) and found to be cubic structure with lattice constant averaged to 0.46877 nm. Al-doping increased the optical transmission of the film substantially. Direct band gap energy of CdO is 2.49 eV which decreased with increasing Al-doping. The refractive index and dielectric constant varies with photon energy and concentration of Al as well. The conductivity of un-doped CdO film shows metallic behavior at lower temperature region. This behavior dies out completely with doping of Al and exhibits semiconducting behavior for whole measured temperature range. Un-doped and Al-doped CdO is an n-type semiconductor having carrier concentration is of the order of ∼1021 cm−3, confirmed by Hall voltage and thermo-power measurements.  相似文献   

18.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

19.
《Solid State Ionics》2006,177(17-18):1501-1507
High-quality crystalline MSn2 (M = Cr and Co) thin films have been successfully fabricated by reactive pulsed laser deposition. The physical and electrochemical properties of the as-deposited thin films have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling and cyclic voltammetry (CV). XRD measurement indicates that the as-deposited thin films prepared at 400 °C consisted mainly of MSn2 (M = Cr and Co) with a small quantity of metal tin. The specific reversible capacities of CrSn2 and CoSn2 thin film electrodes are found to be 467 mA h/g and 465 mA h/g, respectively. A mechanism involving an irreversible decomposition of MSn2 (M = Cr and Co) and a classical alloying process of Sn is proposed. MSn2 (M = Cr and Co) as the starting anode materials for conversion to the Li–Sn alloy can improve its electrochemical performance with high reversible capacity and good stable cycle.  相似文献   

20.
Modified chemical bath deposited (MCBD) bismuth sulphide (Bi2S3) thin films’ structural, optical and electrical properties are engineered separately by annealing in air for 1 h at 300 °C and irradiating with 100 MeV Au swift heavy ions (SHI) at 5 × 1012 ions/cm2 fluence. It is observed that the band gap of the films gets red shifted after annealing and irradiation from pristine (as deposited) films. In addition, there is an increase in the grain size of the films due to both annealing and irradiation, leading to the decrease in resistivity and increase in thermoemf of the films. These results were explained in the light of thermal spike model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号