首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Underactuated systems are featured by fewer control inputs than the degrees-of-freedom, m < n. The determination of an input control strategy that forces such a system to complete a set of m specified motion tasks is a challenging task, and the explicit solution existence is conditioned to differential flatness of the problem. The flatness-based solution denotes that all the 2n states and m control inputs can be algebraically expressed in terms of the m specified outputs and their time derivatives up to a certain order, which is in practice attainable only for simple systems. In this contribution the problem is posed in a more practical way as a set of index-three differential–algebraic equations, and the solution is obtained numerically. The formulation is then illustrated by a two-degree-of-freedom underactuated system composed of two rotating discs connected by a torsional spring, in which the pre-specified motion of one of the discs is actuated by the torque applied to the other disc, n = 2 and m = 1. Experimental verification of the inverse simulation control methodology is reported.  相似文献   

2.
In this paper, we use the differential form method to seek Lie point symmetries of a (2 + 1)-dimensional Camassa–Holm (CH) system based on its Lax pair. Then we reduce both the system and its Lax pair with the obtained symmetries, as a result some reduced (1 + 1)-dimensional equations with their new Lax pairs are presented. At last, the conservation laws for the CH system are derived from a direct method.  相似文献   

3.
This study presents a network simulation of the global embodied energy flows in 2007 based on a multi-region input–output model. The world economy is portrayed as a 6384-node network and the energy interactions between any two nodes are calculated and analyzed. According to the results, about 70% of the world’s direct energy input is invested in resource, heavy manufacture, and transportation sectors which provide only 30% of the embodied energy to satisfy final demand. By contrast, non-transportation services sectors contribute to 24% of the world’s demand-driven energy requirement with only 6% of the direct energy input. Commodity trade is shown to be an important alternative to fuel trade in redistributing energy, as international commodity flows embody 1.74E + 20 J of energy in magnitude up to 89% of the traded fuels. China is the largest embodied energy exporter with a net export of 3.26E + 19 J, in contrast to the United States as the largest importer with a net import of 2.50E + 19 J. The recent economic fluctuations following the financial crisis accelerate the relative expansions of energy requirement by developing countries, as a consequence China will take over the place of the United States as the world’s top demand-driven energy consumer in 2022 and India will become the third largest in 2015.  相似文献   

4.
The feasibility of using neural networks (NNs) to predict the complete thermal and flow variables throughout a complicated domain, due to free convection, is demonstrated. Attention is focused on steady, laminar, two-dimensional, natural convective flow within a partitioned cavity. The objective is to use NN (trained on a database generated by a CFD analysis of the problem of a partitioned enclosure) to predict new cases; thus saving effort and computation time. Three types of NN are evaluated, namely General Regression NNs, Polynomial NNs, and a versatile design of Backpropagation neural networks. An important aspect of the study was optimizing network architecture in order to achieve best performance. For each of the three different NN architectures evaluated, parametric studies were performed to determine network parameters that best predict the flow variables.A CFD simulation software was used to generate a database that covered the range of Rayleigh number Ra = 104–5 × 106. The software was used to calculate the temperature, the pressure, and the horizontal and vertical components of flow speed. The results of the CFD were used for training and testing the neural networks (NN). The robustness of the trained NNs was tested by applying them to a “production” data set (1500 patterns for Ra = 8 × 104 and 1500 patterns for Ra = 3 × 106), which the networks have never been “seen” before. The results of applying the technique on the “production” data set show excellent prediction when the NNs are properly designed. The success of the NN in accurately predicting free convection in partitioned enclosures should help reduce analysis-time and effort. Neural networks could potentially help solve some cases in which CFD fails to solve because of numerical instability.  相似文献   

5.
We numerically investigate hyperchaotic behavior in an autonomous nonlinear system of fractional order. It is demonstrated that hyperchaotic behavior of the integer order nonlinear system is preserved when the order becomes fractional. The system under study has been reported in the literature [Murali K, Tamasevicius A, Mykolaitis G, Namajunas A, Lindberg E. Hyperchaotic system with unstable oscillators. Nonlinear Phenom Complex Syst 3(1);2000:7–10], and consists of two nonlinearly coupled unstable oscillators, each consisting of an amplifier and an LC resonance loop. The fractional order model of this system is obtained by replacing one or both of its capacitors by fractional order capacitors. Hyperchaos is then assessed by studying the Lyapunov spectrum. The presence of multiple positive Lyapunov exponents in the spectrum is indicative of hyperchaos. Using the appropriate system control parameters, it is demonstrated that hyperchaotic attractors are obtained for a system order less than 4. Consequently, we present a conjecture that fourth-order hyperchaotic nonlinear systems can still produce hyperchaotic behavior with a total system order of 3 + ε, where 1 > ε > 0.  相似文献   

6.
A numerical method is presented to compute the response of a viscoelastic Duffing oscillator with fractional derivative damping, subjected to a stochastic input. The key idea involves an appropriate discretization of the fractional derivative, based on a preliminary change of variable, that allows to approximate the original system by an equivalent system with additional degrees of freedom, the number of which depends on the discretization of the fractional derivative. Unlike the original system that, due to the presence of the fractional derivative, is governed by non-ordinary differential equations, the equivalent system is governed by ordinary differential equations that can be readily handled by standard integration methods such as the Runge–Kutta method. In this manner, a significant reduction of computational effort is achieved with respect to the classical solution methods, where the fractional derivative is reverted to a Grunwald–Letnikov series expansion and numerical integration methods are applied in incremental form. The method applies for fractional damping of arbitrary order α (0 < α < 1) and yields very satisfactory results. With respect to its applications, it is worth remarking that the method may be considered for evaluating the dynamic response of a structural system under stochastic excitations such as earthquake and wind, or of a motorcycle equipped with viscoelastic devices on a stochastic road ground profile.  相似文献   

7.
8.
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ? λ ? 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.  相似文献   

9.
A new generalized AKNS hierarchy is presented starting from a 4 × 4 matrix spectral problem with four potentials. Its generalized bi-Hamiltonian structure is also investigated by using the trace identity. Moreover, the special coupled nonlinear equation, the coupled KdV equation, the KdV equation, the coupled mKdV equation and the mKdV equation are produced from the generalized AKNS hierarchy. Most importantly, a Darboux transformation for the generalized AKNS hierarchy is established with the aid of the gauge transformation between the corresponding 4 × 4 matrix spectral problem, by which multiple soliton solutions of the generalized AKNS hierarchy are obtained. As a reduction, a Darboux transformation of the mKdV equation and its new analytical positon, negaton and complexiton solutions are given.  相似文献   

10.
In this work, a completely integrable (2 + 1)-dimensional KdV6 equation is investigated. The Cole-Hopf transformation method combined with the Hirota’s bilinear sense are used to determine two sets of solutions for this equation. Multiple soliton solutions are formally derived to emphasize its complete integrability. Moreover, multiple singular soliton solutions are also developed for this equation. The resonance relation for this equation does not exist.  相似文献   

11.
Tannery effluent (sludge, wastewater) is treated by natural way. The waste sludge has been taken for two treatment process. The alkali chemicals are neutralized by pyroligneous acid which is obtained by pyrolysis process of wood. This sludge is sent out for drying. The dried sludge contains some crack pattern formation. Photographs were used to record two sludge cracking surfaces. Experiment has been performed to study the fracture pattern formation in thin film sludge. We studied changes of crack surface of a sludge by image analysis and also assessed applicability of fractal scaling to crack surfaces. The calculated crack surface dimension shows that the fracture surface exhibit fractal structure. Image size was 256 × 256 pixels. MFA (multifractal analysis) was carried out to the method of moments, i.e., the probability distribution was estimated for moments ranging from ?150 < q < 150 and the generalized dimension were calculated from the log/log slope of the probability distribution for the respective moments over box sizes. Generalized dimension D(q) were attained for this box size range, which are capable of characterizing heterogeneous spatial crack structure. Multifractal spectra analyzed two fracture surface of the image and results were indicated that the width of spectra increases due to pyroligneous acid. Multifractal method is sensitive enough to measure the fracture distribution and can be seen as a different approach for changing research of crack images of manure sludge drying.  相似文献   

12.
Gravity currents are similar in behavior with smoke flows. This work aims to provide evidence justifying the use of gravity current approach to model smoke flows downstream of the fire source. The turbulence solver available in almost all commercial CFD codes solves RANS for the flow field. To find out how well the nature of smoke flow be accurately modeled using RANS that is widely used for incompressible flows. The feasibility of using both Reynolds- and Favre-averaging schemes was numerically compared and examined in this paper. In this work, numerical simulations of a fire occurred in a 400-m longitudinally ventilated tunnel have been successfully performed using FDS version 4. Large eddy simulation is employed in this study. Although the ranges of fire size and ventilation velocity vary respectively from 0 MW to 100 MW and 0 m/s to 10 m/s, this paper focuses on the general flow and temperature fields and the turbulence characteristics. Furthermore, the turbulence kinetic energy levels of the flow in the tunnel at several locations were investigated. Since the flow field is generally induced by mechanical ventilation and combustion, the main contribution to the turbulence kinetic energy comes from its longitudinal, vertical, or their combination.  相似文献   

13.
In this study, we have used London–Eyring–Polanyi–Sato (LEPS) functional form as an interaction potential energy function to simulate H (2H)  Cu(1 1 1) interaction system. The parameters of the LEPS function are determined in order to analyze reaction dynamics via molecular dynamics computer simulations of the Cu(1 1 1) surface and H/(2H) system. Nonlinear least-squares method is used to find the LEPS parameters. For this purpose, we use the energy points which were calculated by a density-functional theory method with the generalized gradient approximation including exchange-correlation energy for various configurations of one and two hydrogen atoms on the Cu(1 1 1) surface. After the fitting procedures, two different parameters sets are obtained that the calculated root-mean-square values are close to each other. Using these sets, contour plots of the potential energy surfaces are analyzed for H  Cu(1 1 1) and 2H  Cu(1 1 1) interactions systems. In addition, sticking, penetration, and scattering sites on the surface are analyzed by using these sets.  相似文献   

14.
This work deals with numerical investigations of the phase space of the planar elliptic restricted three body model. The Sun–Jupiter–Asteroid system is considered and the fast Lyapunov indicator (FLI) is used as a tool to examine various types of orbits on which the infinitesimal mass can undergo. The FLI is computed on given grids of initial conditions regularly spaced in the domain 1.5 AU ? a ? 6 AU and 0 ? e ? 0.5 and for various choices of initial angles: the argument of perihelion ω and mean anomaly M. On the obtained charts the stability regions, the chaotic zones and the geography of resonances are clearly displayed. Moreover, the ‘V’ shaped layers associated with the mean motion resonances of low order with its chaotic zones due to separatrix splitting and libration regions are clearly distinguished. Their size is discussed as a function of the resonance order and the parameters entering into the perturbing function. The results are discussed and compared with analytical studies concerning the subject.  相似文献   

15.
Transport phenomena equations were applied to develop a dynamic mathematical model to accurately describe the conversion of an anaerobic landfill to an aerobic bioreactor. The model equations were solved using the finite element method with the commercially available software COMSOL Multiphysics®. The initial aerobic bacteria concentration and heat of reaction were fitted with values in the range reported in literature. The consumption rate of oxygen and production rates of carbon dioxide and methane, and the growth rate of aerobic biomass were examined at a biomass concentration of 0.15 kg/m3 and at a full scale landfill biomass concentration of 1 kg/m3. Varying leachate injection rate was shown to be more effective for temperature control than changing the rate of air injection. This model provides a framework to determine how other factors such as pH or moisture content affect the conversion from anaerobic to aerobic conditions.  相似文献   

16.
Environmental flows based on the salinity objectives for China’s Yangtze Estuary were quantified to assess the impacts of changing freshwater inflow on the estuarine ecosystem. The salinity objectives for three benthos habitats in the Yangtze Estuary were studied to determine their requirements during the most critical period of the year. The temporal variation in the natural monthly river discharge represented the temporal variation of the ecological objectives used to maintain natural flow regimes. A numerical model, coupled a hydrodynamic processes model with a salinity model and validated using field data of tidal height, current velocity, and salinity at different stations, was developed to simulate the spatial distribution of salinity as a function of the variation in freshwater inflows. The prediction results of the proposed model agreed well with the field data. Considering the salinity objectives for the different habitats, the environmental flow requirements for the Yangtze Estuary were determined. Annual environmental flows should be 9.63 × 1011, 6.32 × 1011, and 4.70 × 1011 m3 for the high, medium, and minimum objectives, which are equivalent to 104%, 68%, and 50% of the annual river discharge, respectively. The periods from September to November should be considered as the critical seasons to maintain the minimum environmental flows in the Yangtze Estuary.  相似文献   

17.
All the conservation laws of zero order are obtained by the method of A-operators for a system of n-dimensional (n  1) equations of gas dynamics with zero velocity of sound. A group subdivision is carried out of this system with respect to an infinite subgroup, which is a normal divider of its main Lie group of transformations; the main group of the resolving system is obtained. First-order non-local symmetries are obtained for the initial system. A special choice of the mass Lagrange variables enables this system to be converted to a reduced system equivalent to it, containing n - 1 spatial variables, which, for n = 2, is written in the form of a one-dimensional complex heat-conduction equation using complex dependent and independent variables.  相似文献   

18.
In this work we consider a simple system of piecewise linear discontinuous 1D map with two discontinuity points: X = aX if ∣X < z, X = bX if ∣X > z, where a and b can take any real value, and may have several applications. We show that its dynamic behaviors are those of a linear rotation: either periodic or quasiperiodic, and always structurally unstable. A generalization to piecewise monotone functions X = F(X) if ∣X < z, X = G(X) if ∣X > z is also given, proving the conditions leading to a homeomorphism of the circle.  相似文献   

19.
《Journal of Complexity》1998,14(2):257-299
First we study asymptotically fast algorithms for rectangular matrix multiplication. We begin with new algorithms for multiplication of ann×nmatrix by ann×n2matrix in arithmetic timeO(nω),ω=3.333953…, which is less by 0.041 than the previous record 3.375477…. Then we present fast multiplication algorithms for matrix pairs of arbitrary dimensions, estimate the asymptotic running time as a function of the dimensions, and optimize the exponents of the complexity estimates. For a large class of input matrix pairs, we improve the known exponents. Finally we show three applications of our results:   (a) we decrease from 2.851 to 2.837 the known exponent of the work bounds for fast deterministic (NC) parallel evaluation of the determinant, the characteristic polynomial, and the inverse of ann×nmatrix, as well as for the solution to a nonsingular linear system ofnequations,   (b) we asymptotically accelerate the known sequential algorithms for the univariate polynomial composition mod xn, yielding the complexity boundO(n1.667) versus the old record ofO(n1.688), and for the univariate polynomial factorization over a finite field, and   (c) we improve slightly the known complexity estimates for computing basic solutions to the linear programming problem withmconstraints andnvariables.  相似文献   

20.
The influence of the quadratic and cubic terms on non-linear dynamic characteristics of the angle-ply composite laminated rectangular plate with parametric and external excitations is investigated. The method of multiple time scale perturbation is applied to solve the non-linear differential equations describing the system up to and including the second-order approximation. All possible resonance cases are extracted and investigated at this approximation order. Two cases of the sub-harmonic resonances cases (Ω2 ? 2ω1 and Ω2 ? 2ω2) in the presence of 1:2 internal resonance ω2 ? 2ω1 are considered. The stability of the system is investigated using both frequency response equations and phase-plane method. It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such system as they represent some of the worst behavior of the system. Such cases should be avoided as working conditions for the system. Some recommendations regarding the different parameters of the system are reported. Comparison with the available published work is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号