首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we show the backward uniqueness in time of solutions to nonlinear integro-differential systems with Neumann or Dirichlet boundary conditions. We also discuss reasonable physical interpretations for our conclusions.  相似文献   

2.
For the numerical integration of singular nonlinear integro-differential equations we consider fractional linear multistep methods. We prove convergence of these methods and discuss their stability (as an extension of A-stability for stiff differential equations). Numerical experiments with the Basset equation are included.  相似文献   

3.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

4.
This article deals with numerical solutions of a general class of coupled nonlinear elliptic equations. Using the method of upper and lower solutions, monotone sequences are constructed for difference schemes which approximate coupled systems of nonlinear elliptic equations. This monotone convergence leads to existence‐uniqueness theorems for solutions to problems with reaction functions of quasi‐monotone nondecreasing, quasi‐monotone nonincreasing and mixed quasi‐monotone types. A monotone domain decomposition algorithm which combines the monotone approach and an iterative domain decomposition method based on the Schwarz alternating, is proposed. An application to a reaction‐diffusion model in chemical engineering is given. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 621–640, 2012  相似文献   

5.
The existence of solutions for many systems of integro-differential equations discovered and generalized in the process of applying the Galerkin method for some initial-boundary value problems will be investigated in this paper. U. V. Le is currently supported by the Academy of Finland and the Emil Aaltonen Foundation.  相似文献   

6.
This paper presents a computational method for solving a class of system of nonlinear singular fractional Volterra integro-differential equations. First, existences of a unique solution for under studying problem is proved. Then, shifted Chebyshev polynomials and their properties are employed to derive a general procedure for forming the operational matrix of fractional derivative for Chebyshev wavelets. The application of this operational matrix for solving mentioned problem is explained. In the next step, the error analysis of the proposed method is investigated. Finally, some examples are included for demonstrating the efficiency of the proposed method.  相似文献   

7.
This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.  相似文献   

8.
This paper presents a fuzzy logic approach for determining a numerical solution to a consistent system of algebraic equations F(x)=0 in which the function F(·) is not explicitly defined and may be underdetermined. Such systems arise frequently in many engineering design problems where design parameters must be chosen using qualitative information by the designer to meet a set of desired performance constraints. The proposed method also can be used for a consistent system of nonlinear equations in which F(·) is explicitly defined and may have fewer independent equations than the number of unknowns. However, this method is very computationally demanding; hence, it is not advisable to apply it to problems involving explicit functions that can be solved using other existing numerical methods. It is seen that this method works quite well and numerical solutions for such problems can be obtained, although it is much slower than Newton's method when employed to consistent, explicit nonlinear equations.  相似文献   

9.
Summary. Scalar hyperbolic integro-differential equations arise as models for e.g. radiating or self-gravitating fluid flow. We present finite volume schemes on unstructured grids applied to the Cauchy problem for such equations. For a rather general class of integral operators we show convergence of the approximate solutions to a possibly discontinuous entropy solution of the problem. For a specific model problem in radiative hydrodynamics we introduce a convergent fully discrete finite volume scheme. Under the assumption of sufficiently fast spatial decay of the entropy solution we can even establish the convergence rate h1/4|ln(h)| where h denotes the grid parameter. The convergence proofs rely on appropriate variants of the classical Kruzhkov method for local balance laws together with a truncation technique to cope with the nonlocal character of the integral operator.Mathematics Subject Classification (2000): 35L65, 35Q35, 65M15  相似文献   

10.
Abstract. This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms. A Crank-Nicolson approximation for this kind of equations is presented. By using the elliptic Ritz Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H1-norm error estimate are demonstrated.  相似文献   

11.
The paper applies a numerical-analytical method for finding periodic solutions of the system of integro-differential equations $$\begin{gathered} \dot x = f(t,x,\mathop \smallint \limits_0^t \varphi (t,s,x(s))ds), t \ne t_i (x), \hfill \\ \Delta x|_{t = t_i (x)} = I_i (x). \hfill \\ \end{gathered} $$ Two theorems for existence of periodic solutions are proved for the cases whent = t i andt = t i(x).  相似文献   

12.
In this paper, we introduce new solutions for fuzzy differential equations as mixed solutions, and prove the existence and uniqueness of global solutions for fuzzy initial value problems involving integro-differential operators of Volterra type. One example is also given by applying mixed solution concept to fuzzy linear differential equations for obtaining their global solutions.  相似文献   

13.
The variational iteration method is used to solve three kinds of nonlinear partial differential equations, coupled nonlinear reaction diffusion equations, Hirota–Satsuma coupled KdV system and Drinefel’d–Sokolov–Wilson equations. Numerical solutions obtained by the variational iteration method are compared with the exact solutions, revealing that the obtained solutions are of high accuracy. He's variational iteration method is introduced to overcome the difficulty arising in calculating Adomian polynomial in Adomian method. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

14.
A computational method for numerical solution of a nonlinear Volterra integro-differential equation of fractional (arbitrary) order which is based on CAS wavelets and BPFs is introduced. The CAS wavelet operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.  相似文献   

15.
The numerical solution of a parabolic equation with memory is considered. The equation is first discretized in time by means of the discontinuous Galerkin method with piecewise constant or piecewise linear approximating functions. The analysis presented allows variable time steps which, as will be shown, can then efficiently be selected to match singularities in the solution induced by singularities in the kernel of the memory term or by nonsmooth initial data. The combination with finite element discretization in space is also studied.

  相似文献   


16.
B. Zubik-Kowal  Z. Jackiewicz  F.C. Hoppensteadt 《PAMM》2007,7(1):2020085-2020086
Our study concerns thalamo-cortical systems which are modelled by nonlinear systems of Volterra integro-differential equations of convolution type. The thalamo-cortical systems describe a new architecture for a neurocomputer. Such a computer employs principles of human brain. It consists of oscillators which have different frequencies and are weakly connected via a common medium forced by an external input. Since a neurocomputer consists of many interconnected oscillators (referred also as neurons), the thalamo-cortical systems include large numbers of Volterra integro-differential equations. Solving such systems numerically is expensive not only because of their large dimensions but also because of many kernel evaluations which are needed over the whole interval from the initial point, where the initial condition is imposed, up to the present point, where the computations are currently executed. Moreover, the whole computed history of the solution has to be stored in the memory of the computing machine. Therefore, robust and efficient numerical algorithms are needed for computer simulations for the solutions to the thalamocortical systems. In this paper, we illustrate an iteration technique to solve the thalamo-cortical systems. The proposed successive iterates are vector functions of time, which change the original problems into systems of easier and separated equations. Such separated equations can then be solved in parallel computing environments. Results of numerical experiments are presented for large numbers of oscillators. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The error analysis is derived. Numerical results and comparisons with other methods in literature are considered.   相似文献   

18.
19.
In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential equations that are solved by the fourth order Runge–Kutta method. Numerical results of coupled Korteweg–de Vries (KdV) equations, coupled modified KdV equations, coupled KdV system and Boussinesq system are obtained. The present results are in good agreement with the exact solutions. Moreover, the method can be applied to a wide class of coupled nonlinear evolution equations.  相似文献   

20.
The use of homotopy analysis method to approximate the solution of nonlinear Volterra-Fredholm integro-differential equation is proposed in this paper. In this case, the existence and uniqueness of the obtained solution and convergence of the method are proved. The accuracy of the proposed numerical scheme is examined by comparing with the modified Adomian decomposition method and Taylor polynomial method in the example. Also, the cost of operations in the algorithms are obtained to demonstrate the efficiency of the presented method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号