首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present numerical results for the FEM (finite element method) presented in [Comput. Methods Appl. Mech. Engrg. 191 (2002) 5045–5065]. This method is devoted to the approximation of fluid flows obeying the Oldroyd model. A particularity of this method, is to take into account the purely viscoelastic case, the so-called Maxwell model, important in practice. Numerical results are given for a fluid flowing in an abrupt plane 4 to 1 contraction. We use the corotational Maxwell model as benchmark in the choice of our computations. Results are also given for the upper convected Maxwell model. Interesting effects appear on the velocity profile: a phenomenon of quasi slip at the downstream wall.  相似文献   

3.
The deformation of an isolated drop in an immiscible liquid undergoing oscillatory shear flow is experimentally investigated as a function of frequency and up to moderate amplitudes. Oscillatory shear flow is generated by using a parallel plate apparatus. Drop shape is observed by video light microscopy along the vorticity direction of the shear flow. The two principal axes and the orientation of the drop in the plane of shear are measured by image analysis. In the small amplitude range, the time dependence of the axes is also harmonic, but not in phase with the applied strain, the phase difference being a decreasing function of the imposed frequency. The linear range (where the major axis is proportional to the amplitude) extends up to strains of 0.5. Good quantitative agreement was found with the Palierne linear viscoelastic model (Palierne, J. F., Linear rheology of viscoelastic emulsions with interfacial tension, Rheol. Acta, 29, 204–214, 1990), thus providing a further example of the good agreement between experiments and small deformation theory.  相似文献   

4.
Summary Results are given of a comparison between dynamic oscillatory and steady shear flow measurements with some polymer melts. Comparison of the steady shear flow viscosity,, with the absolute value of the dynamic viscosity, ¦¦, at equal values of the shear rate,q, and the circular frequency,, has shown the relation thatCox andHerz had found empirically to be substantially correct.Further, the coefficients of the normal stress differences obtained by streaming birefringence techniques have been compared with 2G () · – 2 in the same range of shear rates as covered by the viscosity measurements (G is the real part of the dynamic shear modulus). Two polystyrenes with narrow molecular weight distribution showed the same shift factor along the orq axis for the normal stress coefficients with respect to 2G () · – 2 and the steady shear flow viscosities with respect to the real part of the dynamic viscosity,. For two polyethylenes the results are not so conclusive owing to the smallness of the shift factor found. An empirical equation is proposed predicting the main normal stress difference from dynamic measurements only.
Zusammenfassung Die Ergebnisse von Messungen unter erzwungenen Schwingungen und stationärer Scherströmung an einigen Polymerschmelzen werden miteinander verglichen. Der Vergleich der stationären Viskosität mit der absoluten dynamischen Viskosität ¦¦ bei gleichen Werten des Strömungsgradientenq und der Kreisfrequenz zeigt die Gültigkeit der empirischen Beziehung vonCox undHerz.Weiter wurden die Koeffizienten der Normalspannungsdifferenzen, welche durch Messung der Strömungsdoppelbrechung erhalten wurden, mit 2G() · –2 verglichen, und zwar wiederum bei gleichen Werten vonq und, wobeiG die Speicherkomponente des dynamischen Schubmoduls ist. Zwei Polystyrole mit enger Molekulargewichtsverteilung zeigen die gleiche Verschiebung entlang der-oderq-Achse für die Normalspannungskoeffizienten in bezug auf2G()· –2 und für die stationären Scherviskositäten in bezug auf den Realteil der dynamischen Viskosität. Für zwei Polyäthylene sind die Ergebnisse weniger signifikant, da die entsprechenden Verschiebungen zu klein waren. Eine empirische Beziehung zwischen den Hauptnormalspannungsdifferenzen und den dynamischen Meßwerten wird vorgeschlagen.


Paper presented at the British Society of Rheology Conference, held at Shrivenham, from 9th–12th September, 1968.  相似文献   

5.
6.
The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are exactly evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of restitution, the above transport properties decrease with increasing shear rate.  相似文献   

7.
We consider a homogeneous parallel shear flow of a multimode Maxwell fluid. This problem results in a set of ordinary differential equations for the stresses. In this system, we view the shear rate as a control and consider the problem of steering the system to a given state of stress. The objective is to steer the system from given initial stresses to a final state of stress, allowing the shear rate to vary in an arbitrary fashion. We show that this problem is related to a calculus of variations problem. For the case of two modes, we obtain a characterization of the set of achievable streses.  相似文献   

8.
For liquids with high viscosity and low thermal conductivity, viscous dissipation can cause appreciable errors in rheological property measurements. Here, the influences of both viscous dissipation and fluid inertia on the property measurements in oscillatory sliding plate rheometry are investigated. For Newtonian fluids, Bird (1965) solved the combined problem analytically, but only for high frequencies. Here his solution is extended to any frequencies. Also, the equations of motion and energy are solved for linear viscoelastic fluids, and new analytical solutions for the velocity and temperature profiles are given. In both Newtonian and linear viscoelastic fluids, the temperature rise in the gap increases with frequency. The location of the maximum temperature shifts from the mid-plane at low frequency towards the moving wall at high frequency. The fluid inertia increases the viscous dissipation in both fluids. By solving the combined problem, this paper simplifies rheometer design by providing one unified criterion for avoiding measurement errors. Operating limits are presented graphically for minimizing the effects of both fluid inertia and viscous dissipation in oscillatory sliding plate rheometry.  相似文献   

9.
A numerical analysis is presented for the oscillatory flow of Maxwell fluid in a rectangular straight duct subjected to a simple harmonic periodic pressure gradient.The numerical solutions are obtained by a finite difference scheme method. The stability of this finite difference scheme method is discussed. The distributions of the velocity and phase difference are given numerically and graphically. The effects of the Reynolds number, relaxation time, and aspect ratio of the cross section on the oscillatory flow are investigated. The results show that when the relaxation time of the Maxwell model and the Reynolds number increase, the resonance phenomena for the distributions of the velocity and phase difference enhance.  相似文献   

10.
The dynamic response of viscoelastic fluids under large amplitude oscillatory shear (LAOS) has been a subject of long history. In the LAOS flow, the analysis has been mostly focused on shear stress, possibly due to the lack of accurate measurement of normal stress. However, the normal stress may become larger than shear stress at high-strain amplitudes, and thus it is important that we have a good understanding of the normal stress behavior. Furthermore, with the advancement in the instrumentation, it has become possible to get more reliable data. The purpose of this paper is to develop a research platform to analyze and to understand the normal stress behavior of complex fluids under LAOS flow. In this study, we utilized the Giesekus model as a representative constitutive model, and investigated its diverse responses. We defined the dynamic properties corresponding to normal stress, in a similar way to define dynamic moduli from shear stress, and examine their behavior with various analyzing tools. Experimental data were also compared with model predictions. Despite the fact that it is not yet possible to compare all of the predictions because of instrumental limitation, the prediction has been found to fit well with the experimental data. This study is expected to provide a useful framework for further understanding the nonlinear behavior of complex fluids at large deformation.  相似文献   

11.
Small and large amplitude oscillatory shear measurements (SAOS and LAOS) were used to investigate the rheological behavior of short glass fibers suspended in polybutene and molten polypropylene. Raw torque and normal force signals obtained from a strain-controlled instrument (ARES rheometer) were digitized using an analog to digital converter (ADC) card to allow more precise data analysis. The fiber concentration did not affect the torque signal in the SAOS mode, except for its magnitude, whereas the normal force signal was too low to be measurable. With increasing strain amplitude, the magnitude of the torque became a function of time. Depending on the applied frequency and strain rate, the stress in the filled polybutene increased with time, whereas for reinforced polypropylene (viscoelastic matrix), the behavior was opposite, i.e. the stress decreased with time. These effects were more pronounced at high fiber content. In addition the primary normal stress differences were no longer negligible at large deformation amplitude and exhibited a non-sinusoidal periodic response. Fast Fourier transform (FFT) analysis was performed and the resulting spectra, along with Lissajous figures of the shear stress and the primary normal stress differences, are explained in terms of fiber orientation. The experimental results for the suspensions in polybutene are well predicted by the Folgar-Tucker-Lipscomb (FTL) model.  相似文献   

12.
Summary Results of measurements of dynamic moduli in parallel superposition of a steady and oscillatory shear flow were compared with different theories.Most of the rheological models which are based on the assumption that the material properties (spectrum of relaxation times) are unaffected by the presence of the steady rates of shear give results incompatible with our experimental results described earlier. From these models the best fit is given by the WJFLMB-model.A much better fit is given by theories based on the assumption that the relaxation spectrum is cut-off at a critical value of the relaxation time depending on the prescribed steady rate of shear. Under certain conditions these theories explain qualitatively the linear relations between the frequency 0, at whichG (, ) = 0 and the steady rate of shear , as we found experimentally for several polymer solutions.
Zusammenfassung Die Ergebnisse von Messungen der dynamischen Moduln bei Superposition einer stationären und einer oszillierenden Scherströmungsk omponente werden mit verschiedenen Theorien verglichen.Die meisten rheologischen Modelle sind auf die Annahme gegründet, daß die Stoffeigenschaften (das Relaxationsspektrum) durch das Vorliegen einer stationären Scherströmung nicht verändert werden. Solche Theorien liefern Ergebnisse, die mit unseren früher beschriebenen Ergebnissen unvereinbar sind. Die beste Übereinstimmung liefert noch das WJFLMB-Modell.Eine wesentlich genauere Anpassung ermöglichen diejenigen Theorien, die auf der Annahme gründen, daß das Relaxationsspektrum bei einem kritischen Wert der Relaxationszeit abgeschnitten wird und daß dieser Wert von der überlagerten stationären Scherströmung abhängt. Unter gewissen Bedingungen erklären diese Theorien zumindest qualitativ die lineare Beziehung zwischen der Frequenz 0, bei welcherG (, ) = 0 wird, und der zugeordneten Schergeschwindigkeit , wie wir sie bei verschiedenen Experimenten gefunden haben.


With 4 figures  相似文献   

13.
14.
Currently, rheologists working in the field of oscillatory squeeze flow use extensional strain to characterize the deformations. Due to the shear-dominated flow observed in low Trouton ratio fluids undergoing squeeze flow, it is proposed that an alternate geometry-dependent definition for shear strain in squeeze flow be used instead. Through the use of finite element modelling, it has been shown that this geometry-dependent strain definition allows for better comparison of measurements between both squeeze flow rheometers of different geometric configurations and rotational rheometers. This idea was then explored through laboratory experiments, further supporting this hypothesis. While this definition of strain will only hold true within the bounds of a material’s linear viscoelastic regime, it will help to determine where this boundary is, and thus allow for more accurate material characterization. This type of relationship will become increasingly important with the growing use of squeeze flow rheometers for large-amplitude oscillatory squeezing trials.  相似文献   

15.
Bubble suspensions can be found in many different fields and studying their rheology is crucial in order to improve manufacturing processes. When bubbles are added to a liquid, the magnitude of the viscosity changes and the behavior of the material is modified, giving it viscoelastic properties. For the purpose of this work, the suspended bubbles are considered to be monodisperse. It is assumed that Brownian motion and inertia can be neglected and that the fluid of the matrix is Newtonian and incompressible. The suspension is subject to an oscillatory strain while remaining in the linear regime. The resulting equations are solved in 3D with direct numerical simulation using a finite element discretization. Results of an ordered and random distribution of bubbles of volume fractions up to 40% are presented. The presence of bubbles has an opposite effect on the rheology of the suspension depending on the applied frequency. When the frequency is low, bubbles act as rigid fillers giving a rise to viscosity. On the contrary, when the frequency is high, the strain rate is being accommodated by the gaseous phase. Hence, bubbles deform, leading to a decrease of the viscosity.  相似文献   

16.
Large amplitude oscillatory shear (LAOS) flow has been used to characterize the nonlinear viscoelasticity of polymer melts and solutions. Results are frequently reported with shear stress versus strain loops, or with shear stress versus shear rate loops. A Fourier analysis of the stress response to LAOS is often desired for comparison with theory, or for quantitative comparison between resins. A method is presented which employs the discrete Fourier transform to obtain the Fourier series coefficients from LAOS loops.  相似文献   

17.
During the flow of an emulsion, droplets of the dispersed phase can deform, break up, coalesce or migrate to other regions within the flow field. Understanding these different processes is relevant to morphology development in immiscible polymer blends. Here, emulsions of castor oil in silicone oil were employed to study shear-induced coalescence alone; the conditions chosen were such that drop breakup and drop migration did not occur. A cone-and-plate device and tubes of varying length were used to examine the influence of the average shear rate, the time of shearing, concentration of the dispersed phase, and temperature on the average droplet size. It was found that the extent of “demixing” was not influenced by the spatially non-homogeneous nature of flow in a tube; results correlated very well with the average shear rate. On the other hand, coalescence was significant even when the concentration of the dispersed phase was as low as 0.5%, and it became more important as the concentration was increased. Other results were that the extent of coalescence could be promoted by lowering the shear rate. In quantitative terms, it was found that available coalescence theory gave the correct order of magnitude for the average steady-state droplet size as a function of the imposed shear rate, but the actual variation of drop size with shear rate was gentler than that predicted by theory. An unusual observation was that, under some circumstances, the droplets did not coalesce but simply stuck to each other and maintained their separate identity. Received: 25 March 1999/Accepted: 22 July 1999  相似文献   

18.
Start up of plane Couette flow and large amplitude oscillatory shear flow of single and multimode Maxwell fluids as well as Oldroyd-B fluids have been analyzed by analytical or semi-analytical procedures. The result of our analysis indicates that if a single or a multimode Maxwell fluid has a relaxation time comparable or smaller than the rate of change of force imparted on the fluid, then the fluid response is not singular as Elasticity Number (E ). However, if this is not the case, as E , perturbations of single and multimode Maxwell fluids give rise to highly oscillatory velocity and stress fields. Hence, their behavior is singular in this limit. Moreover, we have observed that transients in velocity and stresses that are caused by propagation of shear waves in Maxwell fluids are damped much more quickly in the presence of faster and faster relaxing modes. In addition, we have shown that the Oldroyd-B model gives rise to results quantitatively similar to multimode Maxwell fluids at times larger than the fastest relaxation time of the multimode Maxwell fluid. This suggests that the effect of fast relaxing modes is equivalent to viscous effects at times larger than the fastest relaxation time of the fluid. Moreover, the analysis of shear wave propagation in multimode Maxwell fluids clearly show that the dynamics of wave propagation are governed by an effective relaxation and viscosity spectra. Finally, no quasi-periodic or chaotic flows were observed as a result of interaction of shear waves in large amplitude oscillatory shear flows for any combination of frequency and amplitudes.  相似文献   

19.
Flow alignment in a large amplitude oscillatory shear field (LAOS) of a lamellar AB and a lamellar ABC block copolymer (A,B are lamellae, C forms cylinders in B-lamellae) has been studied. 2D-small angle X-ray scattering (2D-SAXS) and scanning electron microscopy were used for morphological characterization, and flow birefringence and Fourier-Transform rheology were used to monitor the orientation. The diblock copolymer shows the known frequency-dependent orientation behavior, i.e., a perpendicular or a parallel orientation of the lamellae, while under all conditions for the ABC block copolymer only a perpendicular orientation after a long induction period was found. Due to the introduced third block C the AB lamellar structure with a high viscosity contrast between the A and B domains cannot adapt a parallel orientation of sliding phases. Dynamic mechanical analysis indicates shear induced improvement of the microphase separation of the short C block.  相似文献   

20.
The linear viscoelastic behavior of a soda-lime-silica glass under low frequency shear loading is investigated in the glass transition range. Using the time-temperature superposition technique, the master curves of the shear dynamic relaxation moduli are obtained at a reference temperature of 566°C. A method to determine the viscoelastic constants from dynamic relaxation moduli is proposed. However, some viscoelastic constants cannot be directly measured from the experimental curves and others cannot be precisely obtained due to non-linearity effects at very low frequencies. The generalized Maxwell model is investigated from the experimental dynamic moduli without fixing the viscoelastic constants. A set of parameters is shown to be in good agreement with the experimental dynamic relaxation moduli, but does not give the correct values of the viscoelastic constants of the investigated glass. The soda-lime-silica glass exhibits a non-linear viscoelastic behavior at very low stress level which is usually observed for organic glasses. This non-linear behavior is questioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号