首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
The present paper concerns the electromechanical characterization of an actuator composed of a ceramic plate perforated by 121 holes housing embedded and printed electrodes between which a high voltage is applied. The electrode arrangement is such that the holes where the gas flows are surrounded by surface discharges. Electrical measurements and iCCD images show that the discharge behaves as a typical surface dielectric barrier discharge with streamer and glow regimes during one period of the AC sine voltage. Particle image velocimetry has been used to measure the jet flow produced by the discharge. The plasma discharge is at the origin of a wall jet with mean velocity of about 2.2 m/s, oriented from the active electrode to the grounded one. The capability of this discharge for promoting mixing by reducing the length of the jet core is demonstrated for flow velocities from 20 up to 60 m/s. In all the tested cases, the actuator can improve the mixing downstream of the perforated plate, when periodic perturbations are imposed at the jet column mode (StD = 0.3).  相似文献   

2.
A ring-shaped dielectric barrier discharge (DBD) was explored as a small form factor ionic wind device. Using a concentric ring electrode geometry, the DBD produced a converging ionic wind that leads to a vertical flow away from the DBD electrodes. The vertical flow was channeled through an outlet nozzle to produce a thin air jet, and a grounded auxiliary electrode was placed at the nozzle to enhance the exit velocity. The inner diameter of the ring-shaped DBD electrode and the auxiliary electrode ranged 3.18–9.54 mm and 1.0–4.0 mm, respectively. Results showed that the auxiliary electrode generated an ionic wind velocity up to 3.7 m/s and increased the conversion efficiency from discharge to flow power by a factor of 30 by strengthening the electric field where the ions are accelerated.  相似文献   

3.
In this study, surface Dielectric Barrier Discharge (DBD) actuators powered by nanosecond pulsed high voltage are investigated. The goal is to experimentally characterize the surface DBD actuators in terms of electrical and geometrical parameters.The actuators are made of two conducting electrodes separated by a thin dielectric (Kapton films) and arranged asymmetrically. The active electrode is connected to a pulsed high voltage power supply (voltage up to ±10 kV, rise and fall times of 50 ns and pulse width of 250 ns) and the second electrode is grounded.The experimental results show that the energy per pulse (normalized by the length of the active electrode) is smaller when one increases the inter-electrode spacing between 1 and 3 mm, the thickness of the dielectric barrier between 120 and 360 μm or the length of the electrodes between 10 and 50 cm, for both applied voltage polarities.Optical characterization of the plasma layer for different electrode gaps has been investigated by using an ICCD camera. Results indicate that the plasma produced by positive and negative rising voltage propagates in a streamer-like regime with numerous and well-distributed channels, for any electrode gap distance. However, the positive and negative falling voltage produces similar discharges only for large electrode gaps. In this case, the plasma layer starts from a corona spot in contact with the active electrode and expands in the direction of the grounded electrode in a plume shape.  相似文献   

4.
沈苑  王瑞雪  章程  方志  邵涛 《强激光与粒子束》2016,28(5):055001-112
研究了不同电极结构以及放电参数对微秒脉冲激励的氦等离子体射流放电特性的影响。实验中采用不同管内径、不同电极形状、不同重复频率等参数,通过采集放电阶段的电流电压图、发光图像以及发射光谱等,对等离子体射流的电学特性和光学特性进行诊断。实验结果表明,随着管内直径的增大,氦等离子体射流的长度减小;管内径为8mm时,等离子体射流的击穿电压与放电电流最小,同时,其发射光谱中第二正带系N2,N+2和O等高能活性粒子的强度最高;管内径为5mm的等离子体射流的放电电流、功率及消耗的能量最大;在相同实验条件下,针尖电极结构中的放电电流、消耗的功率还有发射光谱强度都较大;随着重复频率的增加,氦等离子体射流的长度会增加,但击穿电压减小。  相似文献   

5.
A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 m\mu s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300–500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.  相似文献   

6.
Dielectric barrier discharge (DBD) is an important method to produce non-thermal plasma, and the excitation using 50 Hz power source is a convenient choice. In the paper, a comparison of simulation and experiment on the DBD produced by 50 Hz power source is given. For the simulation, an electrical model and a voltage-controlled current source are used to simulate the DBD and the dynamic of microdischarges, respectively. As to the experiment, a plane-parallel configuration DBD is driven by 50 Hz power in atmospheric air. It can be found that the measured voltage, current–time and voltage–charge waveforms are consistent with the simulated results. The variation of the discharge power and transported charges as a function of voltage amplitude, gap spacing, and barrier thickness is presented. The quantitative comparison of the experimental and simulated data confirms the validity of the electrical model. In addition, some discussions are given for the experimental and simulated results.  相似文献   

7.
Effects of voltage driving frequency on the gas composition, electrical and optical emission properties of aqua-plasmas generated in electrolyte solution, are investigated and the experiment was carried out in the range of 10 Hz–50 kHz. In the range of 10–300 Hz, H2 dominated bubbles are generated and it is attributed to electrolysis. With increasing frequency, the gas composition inside the bubble changes to the H2O which can be determined from the observation of atomic H to OH(A-X) transition from the optical measurements of aqua-plasma. In higher frequency than 2 kHz, the boiling on the electrode dominates to the formation of the bubble. Consequently, the radicals and plasma properties are varied with the driving frequency.  相似文献   

8.
Measurements of surface charge in a surface dielectric barrier discharge driven in atmospheric air were successfully demonstrated by a laser polarimetry. AC voltage at a frequency of 2 kHz generated the discharge between an exposed electrode and the dielectric barrier over a buried electrode. Although the discharge behaviors varied depending on the polarity of the exposed electrode, there were no differences in the tendency and amplitude of the surface charge accumulation except the polarity. With higher applied voltage, the amount of surface charge became larger and the charge was distributed farther from the exposed electrode.  相似文献   

9.
刘相梅  李奇楠  李瑞 《中国物理 B》2016,25(6):65203-065203
The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges,with the total input gas flow rate of 400 sccm.It co-exists with a homogeneous,secondary electron-dominated low temperature γ-mode glow discharges.The heat transfer equation and flow equation for neutral gas are taken into account.We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges,and discussed the influences of pressure,electrode spacing,and applied voltage on the plasma density and nanoparticle density profiles.The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges.First,the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges.Second,the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases,especially in the presheath.Finally,as the electrode spacing increases,the nanoparticle density decreased instead of increasing.  相似文献   

10.
Corona discharge from a fine water droplet always involves deformation of the droplet shape or Taylor-cone formation, emission of fine water jets or disruption of droplet. Therefore, corona discharge from a water droplet always manifests complicated aspects. In addition, disruption of Taylor cone simultaneously affects not only discharge current but also motion of water droplet. To confirm corona discharge phenomena from a water droplet protruded from a tip of a metal capillary tube with a diameter of 1 mm, negative corona discharge was investigated by using a water droplet located at a tip of grounded rod electrode facing a ring electrode with positive dc voltage superimposed by ac one. Since the droplet has inherent resonant vibrating frequency defined by the size or volume, the volume of water droplet was adjusted at 20 nL where the corresponding resonant frequency was 500 Hz. The period of the event of successive corona discharge is exactly consistent with resonant frequency defined by the size of the water droplet. As a result, corona pulse trains with a definite duration appeared intermittently corresponding to its resonant vibration. When dc voltage superimposed by ac voltage with resonant frequency of 500 Hz was applied to the water droplet, corona pulse trains appeared at the period corresponding to the frequency. The maximum value of corona current reasonably increased with the applied voltage. Even when the frequency of ac field superimposed on dc field was varied from the resonant frequency, corona pulse trains occur corresponding to not only the superimposed field frequency but also resonant frequency.  相似文献   

11.
李帅康  黄邦斗  章程  邵涛 《强激光与粒子束》2021,33(6):065005-1-065005-11
研制了一种双极性交替的纳秒高压脉冲电源,进行了双极性纳秒脉冲放电产生等离子体研究。该电源先通过固态开关IGBT将直流电压截断成电压脉冲,通过可饱和脉冲变压器拓扑,实现升压并缩短脉冲上升沿。该电源可在一个周期内输出极性相反的2个脉冲,且时序可以灵活控制。通过优化调整器件参数,研制了两种不同输出性能参数的双极性纳秒脉冲电源:①峰值电压10 kV、爆发模式脉冲重复频率500 kHz(正负脉冲间隔2 μs)、连续重复频率1 kHz;②峰值电压25 kV、爆发重频200 kHz、连续重频600 Hz。测试电源的运行性能,发现电源存在温度升高的情况,但长时间(>0.5 h)运行温度趋于稳定。10 kV电源连续运行在1 kHz时最高温度点50.5 ℃;25 kV电源连续运行在600 Hz时最高温度点60 ℃。利用该电源驱动线板电极阵列和表面介质阻挡放电结构,证实了该电源可以用于常压空气条件下产生大面积等离子体。  相似文献   

12.
李永辉  甘延标  董丽芳 《发光学报》2018,39(10):1405-1409
对单针电极射流等离子体产生和发展过程中的光信号进行了研究。首先发现等离子体的长度并不是随外加电压升高而增加,而是和驱动电源的能量在正半周放电脉冲之间的分配有关。通过研究等离子体通道内不同位置的发光信号,发现正半周期第一次放电脉冲是在针尖电极处产生,而第二个脉冲是在等离子体通道中部产生,电子激发温度也是在等离子体中部达到最高。通过分析发现,空间电荷产生的附加电场对于等离子体的产生和发展有着重大影响。  相似文献   

13.
In this paper, the technique of electrostatic precipitation was used to remove excess ions from a mixture with charged particles before collection on a filter in a Faraday cup electrometer of an electrical aerosol detector. The ion precipitator part of the detector was designed, constructed, and evaluated. An analytical model was developed to investigate ion and particle transports due to diffusion and space charge effects inside the ion precipitator. Experimental investigations were carried out for positive ions, the positively applied voltage at the wire electrode ranged from 10 to 150 V, ion flow rates ranged from 5 to 15 L/min, and the radial distance of the inlet was 0.15 and 14 mm at a fixed separation between the wire and outer electrodes. The calculation results showed that all charged particles of 10 nm in diameter could pass through the ion precipitator smoothly without precipitation at the outer electrode. For all ion flow rates, an increase in ion trap voltage produced an increase in ion collection efficiency of the precipitator. Experiments confirmed that the efficiency of the ion precipitator could increase to 99% at an ion trap voltage larger than 100 V for all ion flow rates.  相似文献   

14.
微秒脉冲大气压氦气等离子体射流阵列特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为了深入研究等离子射流阵列的放电特性,利用上升沿1μs、脉宽2μs的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。  相似文献   

15.
Electron temperature and electron concentration in the active zone of a miniaturized radio frequency (RF) non-thermal atmospheric pressure plasma jet in argon have been determined using two independent approaches: the spectroscopic measurement of the broadening of Balmer Hb_\beta and Hg_\gamma lines and a time-dependent, spatially two-dimensional fluid model of a single discharge filament. The plasma source has been configured as a capacitively coupled RF jet (27.12 MHz, 8 W generator output power) with two outer ring electrodes around a quartz capillary with diameter of 4.0 mm between which Ar flows at typical rates of 0.3 slm. The discharge has been operated in a self-organized mode, where equidistant, stationary filaments rotate regularly with a constant frequency at the inner wall of the outer capillary. For the purpose of calculating the spectral line broadening different models applicable at higher electron concentration have been evaluated. Resulting electron concentrations are between 2.2 and 3.3 × 1014 cm-3. The calculation according to the line broadening model provides electron temperatures between 20 000 and 30 000 K which is in agreement with the results of the fluid model calculations. Here, a broad radial profile with a maximal value of about 22 000 K in the centre of the column and an electron concentration of about 7 × 1013 cm-3 have been obtained. Moreover, the results of the model calculations reveal a structural change of the filament from the dielectric surface through the sheath to the column. The axially inhomogeneous region has an extension of about 0.5 mm. In the column a concentration of about 1013 cm-3 has been found for the excited argon atoms, whose collisions with electrons represent the most important ionization channel there.  相似文献   

16.
大气压氖气介质阻挡放电脉冲等离子射流特性   总被引:3,自引:3,他引:0       下载免费PDF全文
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(5):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

17.
The SPABRINK EU project required temporary adhesion of coloured solid “ink” particles to form an image. We use dielectrophoretic force to attach ink particles under the field from a voltage applied to an interdigitated electrode on the image carrying surface.Finite element modeling results were compared in terms of an “adhesion factor” that included the density of particles as well as dielectric constant. In our experiments 50–300 μm alumina, silica sand and polymer particles were shown to adhere to a vertical plane electrode structure under laboratory ambient atmosphere.  相似文献   

18.
为了研究大气压低温等离子体多路射流阵列的放电特性,设计一个实现7路低温等离子体射流的放电装置,采用单电极放电结构,在开放的大气环境下通入氦气。采用高压窄脉冲重复频率电源激励驱动该放电装置,电源脉冲宽度约230 ns,脉冲上升沿约为120 ns。在重复频率为500 Hz的条件下,通过高速摄影初步发现放电电流脉宽约为110 ns,且无反向放电。试验结果表明:平均射流长度随电压幅值增加而增加,在一定电压幅值时射流长度有达到饱和的趋势,这是由于射流通道尾部有空气进入,电压幅值已不再是主要原因;只有在合适的气体流量值时,才能够获得较长的平均射流长度,这是由于气体流量过大或过小时射流均不足以维持形成的放电通道;此外,中心电极放电射流长度受气体流量影响较大,气体流量在一定值时可以观察到中心电极有较长的射流,射流放电强度较弱,气体流量过大或过小时中心电极几乎无放电,这是由于四周电极更易形成放电射流,削弱了中心电极放电。 ,  相似文献   

19.
《Current Applied Physics》2015,15(12):1599-1605
In this paper, we have investigated the feasibility of the high current beam extraction from anode spot plasma as an ion source for large area ion implantation. Experiments have been carried out with the ambient plasma produced by inductive coupling with radio-frequency (RF) power of 200 W at the frequency of 13.56 MHz. Anode spot plasmas are generated near the extraction hole of 2 mm in diameter at the center of a bias electrode whose area exposed to the ambient plasma can be changed. It is found that the maximum ion beam current is extracted at the optimum operating pressure at which the area of bias electrode exposed to ambient plasma is fully covered with the anode spot plasma whose size is dominantly determined by the operating pressure for given gas species. It is also observed that the extracted ion beam current increases nonlinearly with the bias power due to the changes in size and shape of the anode spot plasma. With the well-established anode spot plasma operating at the optimum gas pressure, we have successfully extracted high current ion beam of 6.4 mA (204 mA/cm2) at the bias power of 22 W (∼10% of RF power), which is 43 times larger than that extracted from the plasma without anode spot. Based on the experimental results, criteria for electrode design and operating pressure for ion beam extraction from larger extraction aperture are suggested. In addition, the stability of anode spot plasma in the presence of ion beam extraction through an extraction hole is discussed in terms of the particle balance model.  相似文献   

20.
In this paper, temporal gas temperature in plasma was measured by Rayleigh scattering in a passive way since synchronization was difficult due to the randomness of current pulses. The plasma was generated between a 10 mm pin-to-plane gap connected to a H.V DC voltage through a 130 MΩ resistor and a skin sample was placed on a grounded plate. Even the plasma can be touched by a human hand without any feeling of warmth, the peak temperature could be 337 K then decrease to 295 K over 60 μs at 1 mm. Moreover, the applied voltage dramatically affects peak current and the peak temperature. Therefore, the transient “high” temperature cannot be touched and the so-called “cold” plasma might not be “cold”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号