首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Conus is a genus of predatory marine gastropods that poison the prey with a complex mixture of compounds active on muscle and nerve cells. An individual cone snail's venom contains a mixture of pharmacological agents, mostly short, structurally constrained peptides. This study is focused on the composition of the venom employed by Conus ventricosus Gmelin, 1791, a worm-hunting cone snail living in the Mediterranean Sea. For this purpose, LC coupled to MS techniques has been successfully used to establish qualitative and quantitative differences in conopeptides from minute amounts of venom ducts. We were able to prove variability in the venom conopeptide complement, possibly related to different trophic habits of the species in the Mediterranean Sea. Moreover, the information-rich MS techniques enabled us to identify two novel C. ventricosus peptides, here named Conotoxin-Vn and -Conotoxin-Vn. On the basis of the structural data collected so far, we suggest that Conotoxin-Vn is a conopeptide belonging to the -family that recognizes calcium channels through a specific pharmacophore. Similarly, molecular modeling data suggest that -Conotoxin-Vn should represent a competitive antagonist of neuronal nicotinic acetylcholine receptors (nAChRs).  相似文献   

2.
Impact of novel screening technologies on ion channel drug discovery   总被引:1,自引:0,他引:1  
Ion channels are a large superfamily of membrane proteins that pass ions across membranes. They are critical to diverse physiological functions in both excitable and nonexcitable cells and underlie many diseases. As a result, they are an important target class which is proven to be highly "druggable". However, for high throughput screening (HTS), ion channels are historically difficult as a target class due to their unique molecular properties and the limitations of assay technologies that are HTS-amendable. In this article, we describe the background of ion channels and current status and challenges for ion channel drug discovery, followed by an overview of both conventional and newly emerged ion channel screening technologies. The critical impact of such new technologies on current and future ion channel drug discovery is also discussed.  相似文献   

3.
Recently, an unexpected modified residue, gamma-hydroxy-D-valine (D-Hyv), was identified within ribosomally expressed polypeptide chains of four conopeptides from the venoms of Conus gladiator and Conus mus. To assemble Hyv-containing peptides, we have explored several routes for the synthesis of appropriately functionalized Hyv building blocks. D-Hyv was produced from D-Val by using a variation of the previously published K2PtCl4/CuCl2 oxidative method. Direct synthesis of Boc- or Cbz-D-Hyv lactone proceeded in low yield; additionally, the lactones are too unreactive for solid-phase applications. 9-Borabicyclononane or copper-complexed D-Hyv was prepared and treated with tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf) to produce D-Hyv(O-TBDMS). The most efficient complex disruption was achieved by Chelex 110 resin (Na+ form) treatment of copper-complexed D-Hyv(O-TBDMS). Reaction of D-Hyv(O-TBDMS) with Fmoc-OSu produced Fmoc-D-Hyv(O-TBDMS) in 26% yield from D-Val. The Fmoc-D-Hyv(O-TBDMS) diastereomers were separated by preparative RP-HPLC in 13% yield from D-Val. Fmoc-D-Hyv(O-TBDMS) was used for the synthesis of the conopeptide gld-V* from Conus gladiator. The isolated synthetic and natural products had coincidental mass and NMR spectra. The methodology presented herein will greatly facilitate biological studies of Hyv-containing sequences, such as receptor responses to hydroxylated versus nonhydroxylated conopeptides and the relative susceptibility of proteins to modification by oxidative stress.  相似文献   

4.
The Conoidea superfamily, comprised of cone snails, terebrids, and turrids, is an exceptionally promising group for the discovery of natural peptide toxins. The potential of conoidean toxins has been realized with the distribution of the first Conus (cone snail) drug, Prialt (ziconotide), an analgesic used to alleviate chronic pain in HIV and cancer patients. Cone snail toxins (conotoxins) are highly variable, a consequence of a high mutation rate associated to duplication events and positive selection. As Conus and terebrids diverged in the early Paleocene, the toxins from terebrids (teretoxins) may demonstrate highly divergent and unique functionalities. Recent analyses of the Terebridae, a largely distributed family with more than 300 described species, indicate they have evolutionary and pharmacological potential. Based on a three gene (COI, 12S and 16S) molecular phylogeny, including ~50 species from the West-Pacific, five main terebrid lineages were discriminated: two of these lineages independently lost their venom apparatus, and one venomous lineage was previously unknown. Knowing the phylogenetic relationships within the Terebridae aids in effectively targeting divergent lineages with novel peptide toxins. Preliminary results indicate that teretoxins are similar in structure and composition to conotoxins, suggesting teretoxins are an attractive line of research to discover and develop new therapeutics that target ion channels and receptors. Using conotoxins as a guideline, and innovative natural products discovery strategies, such as the Concerted Discovery Strategy, the potential of the Terebridae and their toxins are explored as a pioneering pharmacological resource.  相似文献   

5.
Polypeptide chains containing D-gamma-hydroxyvaline   总被引:1,自引:0,他引:1  
Life has an unexplained and distinct l-homochirality. Proteins typically incorporate only l-amino acids into their sequences. In the present study, d-Val and d-gamma-hydroxyvaline (d-Hyv; V) have been found within ribosomally expressed polypeptide chains. Four conopeptides were initially isolated, gld-V/gld-V'from the venom of Conus gladiator and mus-V/mus-V' from the venom of Conus mus. Their complete sequences (gld-V/gld-V' = Ala-Hyp-Ala-Asn-Ser-d-Hyv-Trp-Ser and mus-V/mus-V' = Ser-Hyp-Ala-Asn-Ser-d-Hyv-Trp-Ser) were determined by a combination of nano/pico-NMR and MS/MS methods. The amino acid triad that contains the gamma-hydroxylated residue, Ser-d-Hyv-Trp, is a novel structural motif that is stabilized by specific interactions between the d-amino acid and its neighboring l-counterparts. These interactions inhibit lactonization, a peptide backbone scission process that would normally be initiated by gamma-hydroxylated residues. Conopeptides possessing the Ser-d-Hyv-Trp motif have been termed gamma-hydroxyconophans. We have also isolated analogous conopeptides (gld-V and mus-V) containing d-Val instead of d-Hyv; these are termed conophans. gamma-Hydroxyconophans and conophans are particularly atypical because (i) they are not constrained as most conopeptides, (ii) they are extremely short in length, (iii) they have a high content of hydroxylated residues, and (iv) their sequences have no close match with other peptides in sequence databases. Their modifications appear to be part of a novel hyperhydroxylation mechanism found within the venom of cone snails that enhances neuronal targeting. The finding of d-Val and d-Hyv within this family of peptides suggests the existence of a corresponding d-stereospecific enzyme capable of d-Val oxidation.  相似文献   

6.
Nicotinic acetylcholine receptors (nAChRs) are one of the most important families in the ligand-gated ion channel superfamily due to their involvement in primordial brain functions and in several neurodegenerative pathologies. The discovery of new ligands which can bind with high affinity and selectivity to nAChR subtypes is of prime interest in order to study these receptors and to potentially discover new drugs for treating various pathologies. Predatory cone snails of the genus Conus hunt their prey using venoms containing a large number of small, highly structured peptides called conotoxins. Conotoxins are classified in different structural families and target a large panel of receptors and ion channels. Interestingly, nAChRs represent the only subgroup for which Conus has developed seven distinct families of conotoxins. Conus venoms have thus received much attention as they could represent a potential source of selective ligands of nAChR subtypes. We describe the mass spectrometric-based approaches which led to the discovery of a novel α-conotoxin targeting muscular nAChR from the venom of Conus ermineus. The presence of several posttranslational modifications complicated the N-terminal sequencing. To discriminate between the different possible sequences, analogs with variable N-terminus were synthesized and fragmented by MS/MS. Understanding the fragmentation pathways in the low m/z range appeared crucial to determine the right sequence. The biological activity of this novel α-conotoxin (α-EIIA) that belongs to the unusual α4/4 subfamily was determined by binding experiments. The results revealed not only its selectivity for the muscular nAChR, but also a clear discrimination between the two binding sites described for this receptor.  相似文献   

7.
Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.  相似文献   

8.
Recent molecular cloning strategies have revealed that the diversity of voltage-sensitive calcium channels (VSCC) in the nervous system is much larger than indicated by electrophysiological studies. Elucidation of the physiological functions of these novel classes of VSCC requires pharmacological tools such as the blockers which were highly useful in characterizing the L-type VSCC in skeletal, smooth and cardiac muscle. Omega conopeptides found in the venom of fish-eating marine snails are proving to be highly selective blockers of neuronal VSCC. Several omega conopeptides have been isolated from a variety ofConus, characterized and synthesized. Biochemical, electrophysiological and morphological studies with these synthetic conopeptides have shown that novel types of VSCC are located in discrete regions of the brain and control the release of neurotransmitters in a highly selective manner, hitherto unsuspected. Pharmacological studies in animal models of cerebral ischemia have shown that omega conopeptides which selectively block N-type VSCC are highly effective in preventing brain damage caused by the loss of oxygen supply to the brain during the ischemia episode. This article is dedicated to Professor CNR Rao, eminent scientist, scholar and educator, on the occasion of his sixtieth birthday  相似文献   

9.
The glycopeptide CcTx, isolated from the venom of the piscivorous cone snail Conus consors, belongs to the κA‐family of conopeptides. These toxins elicit excitotoxic responses in the prey by acting on voltage‐gated sodium channels. The structure of CcTx, a first in the κA‐family, has been determined by high‐resolution NMR spectroscopy together with the analysis of its O‐glycan at Ser7. A new type of glycopeptide O‐glycan core structure, here registered as core type 9, containing two terminal L ‐galactose units {α‐L ‐Galp‐(1→4)‐α‐D ‐GlcpNAc‐(1→6)‐[α‐L ‐Galp‐(1→2)‐β‐D ‐Galp‐(1→3)‐]α‐D ‐GalpNAc‐(1→O)}, is highlighted. A sequence comparison to other putative members of the κA‐family suggests that O‐linked glycosylation might be more common than previously thought. This observation alone underlines the requirement for more careful and in‐depth investigations into this type of post‐translational modification in conotoxins.  相似文献   

10.
The discovery of novel drugs against animal parasites is in high demand due to drug‐resistance problems encountered around the world. Herein, the synthesis and characterization of 27 organic and organometallic derivatives of the recently launched nematocidal drug monepantel (Zolvix®) are described. The compounds were isolated as racemates and were characterized by 1H, 13C, and 19F NMR spectroscopy, mass spectrometry, and IR spectroscopy, and their purity was verified by microanalysis. The molecular structures of nine compounds were confirmed by X‐ray crystallography. The anthelmintic activity of the newly designed analogues was evaluated in vitro against the economically important parasites Haemonchus contortus and Trichostrongylus colubriformis. Moderate nematocidal activity was observed for nine of the 27 compounds. Three compounds were confirmed as potentiators of a known monepantel target, the ACR‐23 ion channel. Production of reactive oxygen species may confer secondary activity to the organometallic analogues. Two compounds, namely, an organic precursor ( 3 a ) and a cymantrene analogue ( 9 a ), showed activities against microfilariae of Dirofilaria immitis in the low microgram per milliliter range.  相似文献   

11.
This review focuses on biologically active entities from invertebrate sources, especially snails. The reader will encounter several categories of compounds from snails including glycosaminoglycans, peptides, proteins (glycoproteins), and enzymes which possess diverse biological activities. Among glycosaminoglycans, acharan sulfate which was isolated from a giant African snail Acahtina fulica is reviewed extensively. Conotoxins which are also called conopeptides are unique peptide mixtures from marine cone snail. Conotoxins are secreted to capture its prey, and currently have the potential to be highly effective drug candidates. One of the conotoxins is now in the market as a pain killer. Proteins as well as glycoproteins in the snail are known to be involved in the host defense process from an attack of diverse pathogens. Carbohydrate-degrading enzymes characterized and purified in snails are introduced to give an insight into the applicability in glycobiology research such as synthesis and structure characterization of glycoconjugates. It seems that simple snails produce very complicated biological compounds which could be an invaluable source in future therapeutics as well as research areas in natural medicine.  相似文献   

12.
Studies utilizing selective pharmacological antagonists or targeted gene deletion have demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are critical mediators and potential therapeutic targets for the treatment of numerous disorders of the central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, Fragile X syndrome, Parkinson's disease, and gastroesophageal reflux disease. However, in recent years, the development of positive allosteric modulators (PAMs) of the mGluR5 receptor have revealed that allosteric activation of this receptor may also be of potential therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here we summarize the discovery and characterization of various mGluR5 PAMs, with an emphasis on those that are systemically active. We will also review animal studies showing that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the ability to enhance synaptic plasticity, improve performance in various learning and memory tasks, including extinction of drug-seeking behavior, and reverse cognitive deficits produced by chronic drug use.  相似文献   

13.
The crucial step in drug discovery is the identification of a lead compound from a vast chemical library by any number of screening techniques. NMR-based screening has the advantage of directly detecting binding of a compound to the target. The spectra resulting from these screens can also be very complex and difficult to analyze, making this an inefficient process. We present here a method, RAMPED-UP NMR, (Rapid Analysis and Multiplexing of Experimentally Discriminated Uniquely Labeled Proteins using NMR) which generates simple spectra which are easy to interpret and allows several proteins to be screened simultaneously. In this method, the proteins to be screened are uniquely labeled with one amino acid type. There are several benefits derived from this unique labeling strategy: the spectra are greatly simplified, resonances that are most likely to be affected by binding are the only ones observed, and peaks that yield little or no information upon binding are eliminated, allowing the analysis of multiple proteins easily and simultaneously. We demonstrate the ability of three different proteins to be analyzed simultaneously for binding to two different ligands. This method will have significant impact in the use of NMR spectroscopy for both the lead generation and lead optimization phases of drug discovery by its ability to increase screening throughput and the ability to examine selectivity. To the best of our knowledge, this is the first time in any format that multiple proteins can be screened in one tube.  相似文献   

14.
BACKGROUND: The brevetoxins are marine neurotoxins that interfere with the normal functions of the voltage-gated Na(+) channel. We have identified two brevetoxin derivatives that do not exhibit pharmacological properties typical of the brevetoxins and that function as brevetoxin antagonists. RESULTS: PbTx-3 and benzoyl-PbTx-3 elicited Na(+) channel openings during steady-state depolarizations; however, two PbTx-3 derivatives retained their ability to bind to the receptor, but did not elicit Na(+) channel openings. alpha-Naphthoyl-PbTx-3 acted as a PbTx-3 antagonist but did not affect Na(+) channels that were not exposed to PbTx-3. beta-Naphthoyl-PbTx-3 reduced openings of Na(+) channels that were not exposed to PbTx-3. CONCLUSIONS: Some modifications to the brevetoxin molecule do not alter either the binding properties or the activity of these toxins. Larger modifications to the K-ring sidechain do not interfere with binding but have profound effects on their pharmacological properties. This implies a critical function for the K-ring sidechain of the native toxin.  相似文献   

15.
Nuclear Magnetic Resonance (NMR) spectroscopy has long been a favourite tool of chemists interested in host-guest systems because it permits access to a wealth of information about the molecular recognition reaction. NMR has evolved dramatically in the last 15 years and, in parallel with the development of NMR methods for the determination of protein structure, a variety of tools aimed at detecting protein ligand interactions have been proposed and are being now used both in industrial and academic laboratories as valuable tools for structure-based drug discovery. Very recent developments have considerably increased the fraction of therapeutic targets that can be tackled by NMR and significantly reduced the amount of sample required for analysis; in this tutorial review we outline the essential NMR-based techniques and describe some examples of their implementation as part of drug discovery programmes.  相似文献   

16.
Adequate pain management, particularly chronic pain, remains a major challenge associated with modern-day medicine. Current pharmacotherapy offers unsatisfactory long-term solutions due to serious side effects related to the chronic administration of analgesic drugs. Morphine and structurally related derivatives (e.g., oxycodone, oxymorphone, buprenorphine) are highly effective opioid analgesics, mediating their effects via the activation of opioid receptors, with the mu-opioid receptor subtype as the primary molecular target. However, they also cause addiction and overdose deaths, which has led to a global opioid crisis in the last decades. Therefore, research efforts are needed to overcome the limitations of present pain therapies with the aim to improve treatment efficacy and to reduce complications. This review presents recent chemical and pharmacological advances on 14-oxygenated-N-methylmorphinan-6-ones, in the search of safer pain therapeutics. We focus on drug design strategies and structure–activity relationships on specific modifications in positions 5, 6, 14 and 17 on the morphinan skeleton, with the goal of aiding the discovery of opioid analgesics with more favorable pharmacological properties, potent analgesia and fewer undesirable effects. Targeted molecular modifications on the morphinan scaffold can afford novel opioids as bi- or multifunctional ligands targeting multiple opioid receptors, as attractive alternatives to mu-opioid receptor selective analgesics.  相似文献   

17.
Physiological processes are mainly controlled by intermolecular recognition mechanisms involving protein–protein and protein–ligand (low molecular weight molecules) interactions. One of the most important tools for probing these interactions is high-field solution nuclear magnetic resonance (NMR) through protein-observed and ligand-observed experiments, where the protein receptor or the organic compounds are selectively detected. NMR binding experiments rely on comparison of NMR parameters of the free and bound states of the molecules. Ligand-observed methods are not limited by the protein molecular size and therefore have great applicability for analysing protein–ligand interactions. The use of these NMR techniques has considerably expanded in recent years, both in chemical biology and in drug discovery. We review here three major ligand-observed NMR methods that depend on the nuclear Overhauser effect—transferred nuclear Overhauser effect spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopy experiments—with the aim of reporting recent developments and applications for the characterization of protein–ligand complexes, including affinity measurements and structural determination.  相似文献   

18.
Biomolecular NMR spectroscopy has expanded dramatically in recent years and is now a powerful tool for the study of structure, dynamics, and interactions of biomolecules. Previous limitations with respect to molecular size are no longer a primary barrier, and systems as large as 900 kDa were recently studied. NMR spectroscopy is already well-established as an efficient method for ligand screening. A number of recently developed techniques show promise as aids in structure-based drug design, for example, in the rapid determination of global protein folds, the structural characterization of ligand-protein complexes, and the derivation of thermodynamic parameters. An advantage of the method is that all these interactions can be studied in solution--time-consuming crystallization is not necessary. This Review focuses on recent developments in NMR spectroscopy and how they might be of value in removing some of the current "bottlenecks" in structure-based drug discovery.  相似文献   

19.
Conotoxins as research tools and drug leads   总被引:5,自引:0,他引:5  
The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.  相似文献   

20.
Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide-bridged conotoxin, mu-SxIIIA (from the venom of Conus striolatus), whose discovery is also reported here for the first time. Mu-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with (15)N/(13)C, while the remaining three cysteine residues were incorporated using a mixture of 70%/30% unlabeled/labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple-resonance ((1)H, (13)C, (15)N) NMR experiments and 2D [(13)C, (1)H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of mu-conotoxins. Mu-SxIIIA was found to be a potent blocker of the sodium channel subtype Na(V)1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号