首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photophysical Properties of the Cationic Form of Neutral Red   总被引:1,自引:0,他引:1  
Abstract— Photophysical properties of the cationic form of neutral red (NRH+), a phenazine-based dye of biological importance, have been investigated in several protic and aprotic solvents using optical absorption, steady-state and time-resolved fluorescence and picosecond laser flash photolysis techniques. Absorption and fluorescence characteristics of the dye in protic solvents indicate the existence of intermolecular hydrogen bonding between the NRH+ and solvent molecules in the ground state as well as in the excited state. Measurements of the fluorescence lifetime in normal and heavy water also support the formation of intermolecular hydrogen bonding. Time-resolved transient absorption spectra obtained in the picosecond laser flash photolysis experiments show only the absorption band due to the Sn← S1 absorption. The picosecond transient absorption results do not indicate any spectral shifts attributable to the hydrogen bond formation dynamics between the excited NRH+ and the protic solvent molecules. It is inferred that the hydrogen bonding dynamics are much faster than the time resolution of our picosecond setup (∼35 ps).  相似文献   

2.
A cyclometalated platinum(II) 4,6-diphenyl-2,2'-bipyridyl pentynyl complex (1) has been synthesized and structurally characterized. Its photophysical and third-order nonlinear optical properties have been systematically investigated. This complex exhibits a metal-to-ligand charge-transfer (1MLCT) absorption band between 400 and 500 nm and a 3MLCT emission band at approximately 591 nm at room temperature with a lifetime of approximately 100 ns. At 77 K, the emission band blue shifts. Both UV-vis absorption and emission spectra show solvent dependence. Low-polarity solvents cause a bathochromic shift of the absorption and emission bands. This complex also exhibits a broad and strong transient absorption from the near-UV to the near-IR spectral region, with a triplet absorption coefficient of 4933 L mol(-1) cm(-1) at 585 nm and a quantum yield of 0.51 for the formation of the triplet excited state. Nonlinear transmission and Z-scan techniques were employed to characterize the third-order nonlinearities of this complex. A strong and broadband reverse saturable absorption was observed for nanosecond and picosecond laser pulses due to the reduced ground-state absorption in the visible spectral range. It also exhibits a self-defocusing effect at 532 nm for nanosecond laser pulses. The excited-state absorption cross section deduced from the open-aperture Z-scan increases at longer wavelengths, with an exceptionally large ratio of excited-state absorption to ground-state absorption of 160 at 570 nm for picosecond laser pulses.  相似文献   

3.
Abstract— Using the example of Zn-octaethylporphin π-monoanion solution in tetrahydrofuran, we studied the dynamics of ultrafast photoprocesses in porphyrin π-anions using a tunable picosecond absorption spectrometer. The deactivation kinetics of the lowest excited electronic (doublet) state of Zn-octaethylporphin iT-monoanion has been determined and was found to be followed by a single exponential function with the characteristic time 135 ps. It is shown that upon picosecond excitation to the long wavelength absorption band (λmax= 830 nm) the process of two-quantum photoionization of the involved monoanion is easily realized, with the results that the observable kinetics of spectral changes exhibit a strong dependence on the excitation intensity.  相似文献   

4.
Photoinduced electron transfers between Nile red (NR) with TiO2 colloidal nanoparticles are studied using picosecond transient absorption and time resolved fluorescence spectroscopy. The dynamics of electron transfer from the dye molecule to the semiconductor were understood from the transient, and also the formation of conduction band electron and Nile red cation radical were detected.  相似文献   

5.
The absorption spectra of the solvated electron in 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD) have been determined by nanosecond pulse radiolysis techniques. The maximum of the absorption band located at 570, 565, and 575 nm for these three solvents, respectively. With 4,4'-bipyridine (44Bpy) as a scavenger, the molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1 m2 for 12ED, 12PD, and 13PD, respectively. These values are two-thirds or three-fourths of the value usually reported in the literature. With these extinction coefficients, picosecond pulse radiolysis studies have allowed us to depict the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of water solution.  相似文献   

6.
In the long-wavelength region of the S0S1 absorption band of dyes only a fraction of molecules takes part in the absorption process. The absorption cross section of the molecules involved is deduced from non-linear transmission measurements with picosecond light pulses. The absorption cross sections σAL) (νL is the ruby-laser frequency) of 1,1′-diethyl-2,4′-carbocyanine iodide in methanol and oxazine 1 perchlorate in ethanol are determined.  相似文献   

7.
Abstract— The solution of chlorophyll a in hexane with more than 70% of chlorophyll molecules in the form of the dihydrate (CHl-a.2H2O)n is investigated at room temperature by picosecond absorption technique. The transient difference spectra and the kinetic dependences of the absorption changes are measured for several excitation and probe wavelengths. Creation of a new state with blue-shifted absorption band is observed in the system after excitation. A model of the behaviour of the system after excitation is proposed and checked by comparison of the computer-simulated spectral and time dependences with the experimental data. According to the model, about 30% of excited molecules are in the state with the 0.046 eV shift of the absorption band in comparison with the ground state absorption. The lifetime of this state has 170-ps component. The rest of the excited molecules are in the first excited state with the decay time component of 37 ps.  相似文献   

8.
Abstract— Molecular mechanism of fluorescence quenching of flavins in flavodoxin from Desulfovibrio vulgaris , strain Miyazaki, and riboflavin binding protein from egg white has been investigated by means of picosecond laser photolysis technique. In the case of flavodoxin, a transient absorption band characteristic of the non-fluorescent exciplex formed by electron transfer from indole to excited flavins in model systems has been observed around 600 nm at the delay time of 33 ps from exciting ps pulse pulse width, 25 ps). In the case of riboflavin binding protein, the transient absorption spectra were different from those of flavin-indole exciplex and rather similar to the spectra of the model system of flavin-phenol. These results suggest that tryptophan residue exists near the isoalloxazine nucleus in flavodoxin, and in riboflavin binding protein, tyrosine residue exists near the flavin. Direct measurements of the ultrafast process of the electron transfer in flavoproteins as developed here could provide useful information for elucidating protein dynamics, associated with redox reaction, in the picosecond time region.  相似文献   

9.
Photoinduced picosecond absorption spectra of poly(1,4-phenylene-1,2-diphenylvinylene) (DP-PPV) and of related oligomeric and polymeric compounds were investigated in toluene solution. Between 400 and 900 nm the rise (5 … 40 ps) and decay (40 … 300 ps) of three transient absorption bands have been observed. The low energy absorption appears with a time delay of 5 ps and has its peak at 680 nm (1.8 eV). This band position is coincident with the well known ECS radical ion (polaron) absorption and is therefore assigned to this type of photogenerated charged species. The other two absorptions appear at higher energies. One of them is situated at 2.8 eV which is near to the band edge (2.9 eV). It originates immediately with the exciting pulse and is attributed to a neutral excited state. The other one (2.7 eV) is suggested to be due to an ECS diion (bipolaron).  相似文献   

10.
The photophysical properties of a tetrahedral molecule with naphthalene diimide (NDI) moieties and of two model compounds were investigated. The absorption and fluorescence spectra of dialkyl-substituted NDI are in agreement with literature. While the absorption spectra of phenyl-substituted molecules are similar to all other NDIs, their fluorescence showed a broad band between 500 and 650 nm. This band is sensitive to the polarity of the solvent and is attributed to a CT state. The absorption spectra and lifetime (10+/-2 ps) of the electronically excited singlet state of a dialkyl-substituted NDI was determined by femtosecond transient absorption spectroscopy, and the latter was confirmed by picosecond fluorescence spectroscopy. Nanosecond flash photolysis showed the subsequent formation of the triplet state. The presence of a phenyl substituent on the imide nitrogen of NDI resulted in faster deactivation of the singlet state (lifetime 0.5-1 ps). This is attributed to the formation of a short-lived CT state, which decays to the local triplet state. The faster deactivation was confirmed by fluorescence lifetime measurements in solution and in a low-temperature methyl-tetrahydrofuran glass.  相似文献   

11.
Steady-state and time-resolved picosecond fluorescence spectra of the J-band aggregate state of the dye 1,1′-diethyl-2,2′-cyanine bromide were measured at different temperatures. When the temperature was lowered below 210 K, two narrow bands centered at 572 and 577 nm appeared in the absorption and fluorescence spectra arising from the formation of the J aggregate. The time-resolved fluorescence study showed that the relaxation decay time of the J-band was ≈ 20 ps while that of the monomer band was ≈ 300 ps.  相似文献   

12.
A meso–meso β‐β β‐β triply linked subporphyrin dimer 6 was synthesized by stepwise reductive elimination of β‐to‐β doubly PtII‐bridged subporphyrin dimer 9 . Dimer 6 was characterized by spectroscopic and electrochemical measurements, theoretical calculations, and picosecond time‐resolved transient absorption spectroscopy. X‐ray diffraction analysis reveals that 6 has a bowl‐shaped structure with a positive Gaussian curvature. Despite the curved structure, 6 exhibits a remarkably red‐shifted absorption band at 942 nm and a small electrochemical HOMO–LUMO gap (1.35 eV), indicating an effectively conjugated π‐electronic network.  相似文献   

13.
Ultrafast structural dynamics concomitant to excitation energy transfer in DNA has been studied using a pair of pyrene-labeled DNA bases. The temporal evolution of the femtosecond pump-probe spectra reveals the existence of two electronic coupling pathways, through-base stack and through-space, which lead to excitation energy transfer and excimer formation even when the labeled DNA bases are separated by one AT base pair. The electronic coupling which mediates through-base stack energy transfer is so strong that a new absorption band arises in the excited-state absorption spectrum within 300 fs. From the analysis of time-dependent spectral shifts due to through-space excimer formation, the local structural dynamics and flexibility of DNA are characterized on the picosecond and nanosecond time scale.  相似文献   

14.
Photoinduced interfacial electron transfer from the conduction band of colloidal TiO2 semiconductor particles to the cofacial dimeric viologen DV4+, an electron acceptor, occurs in the picosecond time domain. The interfacial electron-transfer rate constant is about 2 × 1010 s−1 at pH 7.8. The reaction involves consecutive one-electron transfer to give the monoreduced DV3+ initially, followed by formation of DV2+. In acidic aqueous media (pH 3.5) transient picosecond absorption spectra show the formation of the monoreduced species only.  相似文献   

15.
Auramines containing a vinyl group with strong electron-withdrawing substituent exhibit a pi-conjugated extended effect that gives a red shift in their absorption and emission bands. The new fluorochromic dyes were bound to poly(methacrylic acid) (PMA), and their photophysical dynamics in methanol and in aqueous solution were studied. These derivatives were also used as optical probes for copolymerization process. The process was monitored by the changes in electronic absorption with a concomitant fading of the free vinyl auramine absorption band in the red and an appearance of a UV band ascribed to dye bound to the polymer chain. The conformational transition of PMA with solvent and pH was clearly observed by the drastic changes in the photophysical properties of these auramine derivatives attached to the polymer chain. Time-resolved experiments revealed an unusual long-lived decay component of about 2.2-2.6 ns in aqueous solution at low pH together with two picosecond components (50 and 570 ps). Such long decay was only reported in the literature for auramine adsorbed in solid matrices. It was ascribed to the fraction of bound auramine in a region of compact coil of PMA.  相似文献   

16.
We demonstrate the use of transient IR absorption measurements for picosecond thermometry of protein in an aqueous environment. For small temperature changes, measured transient absorption changes are shown to be in excellent agreement with the "static" temperature dependence of the protein and water constituents of the sample as measured by FTIR spectroscopy. The thermally induced changes in IR absorption reach equilibrium within a few picoseconds, making this technique an excellent tool for picosecond thermometry.  相似文献   

17.
A series of thioxo compounds, thioacetamide, N-methylthioacetamide, a cyclic thioxoamide [(S)-5-thioxopyrrolidine-2-carboxylic acid ethyl ester], two thioxylated dipeptides (Ala-Psi[CS-NH]-Ala and Phe-Psi[CS-NH]-Ala) and a thioxylated dodecapeptide (Lys-Glu-Thr-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Psi[CS-NH]-Nle-Asp-Ser-Ser-Thr-Ser-Ala-Ala, or [thioxo-His(12)]-S-peptide; Nle = norleucine) are investigated by ultrafast spectroscopy in the visible and near UV. The different molecules show very similar absorption dynamics featuring a rise of a strong visible absorption band on the subpicosecond and picosecond time scale. The decay of the visible absorption occurs within 150-600 ps. The observations are interpreted by the ultrafast formation of triplet states and their decay on the subnanosecond time scale. Comparison with published IR experiments on N-methylthioacetamide indicates that the cis-trans isomerization around the thioxopeptide bond is terminated within less than 1 ns.  相似文献   

18.
The reaction dynamics of trans-2-butene adsorbed to acidic hydroxyl groups on the surface of ferrierite zeolite is examined by time-resolved spectroscopy using a tunable infrared picosecond pulse laser system. The transient absorption spectra measured by a two-color pump-probe technique at 188-243 K reveal bleaching and hot bands of the OD stretching mode 2 ps after excitation. This vibrationally excited state relaxes within 20 ps at 188 K, while the bleaching band includes a long-lifetime component that lasts for more than 100 ps at 243 K. Thus, the OD (isotope-exchanged hydroxy groups) stretching band does not entirely recover in this period and is mirrored by an analogous weakening of the CH bending band of the adsorbed trans-2-butene. Simultaneously, three new bands in CH stretching region were observed at 3045, 3095, and 3130 cm(-1). This result suggests the presence of a short-lived intermediate formed by reaction between the acidic hydroxyl groups and adsorbed trans-2-butene.  相似文献   

19.
The effect of significant decrease of water absorptivity for the intense picosecond laser radiation at λ=2.79 and 2.94 μm being near the centre of the OH stretching mode absorption band was discovered. In the case of pure water a thermal mechanism dominated: a very fast temperature rise led to weakening of H-bonds and consequently to the absorption band shift towards higher frequencies. As a result a considerable (up to 10 times) decrease in the optical density at the laser frequency was obtained. In the second case of HDO diluted in D2O the temperature effects were eliminated and a pure spectroscopic saturation of the v = 0 to v =1 vibrational transition was displayed. The value of the saturation intensity as high as Is=2.5 × 1011W cm−2 in this case gives the value of energy relaxation time of the OH excited state to be T1=0.6 ps. The width of the homogeneously broadened component of the fundamental OH band in HDO is evaluated to be greater than or equal to 50 cm−1.  相似文献   

20.
A linear and nonlinear optical spectroscopic characterization is carried out on three azo dyes (Reactive orange 1, Reactive violet 8, and Acidproof purplish red), and on N-(p-hydroxybenzylidene)-diamino-maleonitrile. Fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes are measured. The saturable absorption is studied by nonlinear transmission measurements with intense picosecond laser pulses. The ground-state absorption recovery is studied by picosecond time-resolved pump and probe measurements. Absolute ground-state absorption cross-sections, excited-state absorption cross-sections, and dye concentrations are extracted from saturable absorption studies. The azo dyes have fluorescence lifetimes and ground-state absorption recovery times of around 2 ps and their excited-state absorption cross-sections are small (measured at 527 nm) making them good mode-locking dyes for picosecond and femtosecond lasers. The investigated diamino-maleonitrile dye exhibits sub-picosecond fluorescence lifetime and slow ground-state absorption recovery (>1 ns).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号