首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

2.
G‐rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper‐catalyzed azide‐alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G‐quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context.  相似文献   

3.
The interaction of phenyl‐substituted indolo[3,2‐b]quinolines with DNA G‐quadruplexes of different topology were studied by using a combination of spectroscopic and calorimetric methodologies. N5‐Methylated indoloquinoline derivatives (MePIQ) with an aminoalkyl side chain exhibit high affinities for the parallel‐stranded MYC quadruplex and a (3+1)‐hybrid structure combined with an excellent discrimination against the antiparallel thrombin‐binding aptamer (TBA) and the human telomeric (HT) quadruplexes. Dissociation constants for the binding of the ligand to the MYC quadruplex are in the submicromolar range, being below the corresponding dissociation constants for the antiparallel‐stranded quadruplexes by about one order of magnitude. Competition experiments with double‐helical DNA reveal the impact of indoloquinoline structural features on the selectivity for the parallel quadruplex relative to duplex DNA. Based on a calorimetric analysis binding to MYC is shown to be equally driven by favorable enthalpic and entropic contributions with no significant impact on the type of cation present.  相似文献   

4.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

5.
Small molecules capable of stabilizing the G‐quadruplex (G4) structure are of interest for the development of improved anticancer drugs. Novel 4,7‐diamino‐substituted 1,10‐phenanthroline‐2,9‐dicarboxamides that represent hybrid structures of known phenanthroline‐based ligands have been designed. An efficient synthetic route to the compounds has been developed and their interactions with various G4 sequences have been evaluated by Förster resonance energy transfer (FRET) melting assays, fluorescent intercalator displacement (FID), electrospray ionization mass spectrometry (ESI‐MS), and circular dichroism (CD) spectroscopy. The preferred compounds have high aqueous solubility and are strong and potent G4 binders with a high selectivity over duplex DNA; thus, they represent a significant improvement over the lead compounds. Two of the compounds are inhibitors of HeLa and HT1080 cell proliferation.  相似文献   

6.
We report herein a solvent‐free and microwaved‐assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4‐oxadiazole moieties ( 1 – 7 ). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4‐FID) and CD spectroscopy. Among the G‐quadruplexes considered, attention was focused on telomeric repeats together with the proto‐oncogenic c‐kit sequences and the c‐myc oncogene promoter. Compound 1 , and to a lesser extent 2 and 5 , preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole ( TOxaPy ), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties.  相似文献   

7.
DNA and RNA G‐quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G‐quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G‐stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.  相似文献   

8.
The quest for ligands that specifically bind to particular G‐quadruplex nucleic acid structures is particularly important to conceive molecules with specific effects on gene expression or telomere maintenance, or conceive structure‐specific molecular probes. Using electrospray mass spectrometry in native conditions, we reveal a highly cooperative and selective 2:1 binding of CuII‐tolylterpyridine complexes to human telomeric G‐quadruplexes. Circular dichroism and comparisons of affinities for different sequences reveal a marked preference for antiparallel structures with diagonal loops and/or wide‐medium–narrow‐medium groove‐width order. The cooperativity is attributed to conformational changes in the polymorphic telomeric G‐quadruplex sequences, which convert preferably into an antiparallel three‐quartet topology upon binding of two ligands.  相似文献   

9.
Single‐stranded telomeric DNA tends to form a four‐base‐paired planar structure termed G‐quadruplex. Although kinds of G‐quadruplex structures in vitro have been documented in the presence of potassium or sodium, recognition of these DNA motifs (both in vitro and in vivo) is still an important issue in understanding the biological function of the G‐quadruplex structures in telomeres as well as developing anticancer agents. Herein we address this important question through the distinctive properties of a supramolecular system of cyanine dye 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐methyl‐thiacarbocyanine triethylammonium salt (MTC) upon binding to different DNA motifs. Interaction of MTC with hybrid/mixed G‐quadruplex results in a set of unique spectrophotometric signatures which are completely different from those arising from binding to other DNA motifs. Furthermore, such feature could be extended to map the locations of DNAs on interface. Linear duplex and mixed G‐quadruplex in human telomeres assembled on Au film and stained by MTC were directly recognized by confocal laser scanning microscopy (CLSM). All results suggested that MTC supramolecular system may be a good probe of specific G‐quadruplex structure.  相似文献   

10.
The design and synthesis of a series of bis‐indole carboxamides with varying amine containing side chains as G‐quadruplex DNA stabilising small molecules are reported. Their interactions with quadruplexes have been evaluated by means of Förster resonance energy transfer (FRET) melting analysis, UV/Vis spectroscopy, circular dichroism spectroscopy and molecular modelling studies. FRET analysis indicates that these ligands exhibit significant selectivity for quadruplex over duplex DNA, and the position of the carboxamide side chains is of paramount importance in G‐quadruplex stabilisation. UV/Vis titration studies reveal that bis‐indole ligands bind tightly to quadruplexes and show a three‐ to fivefold preference for c‐kit2 over h‐telo quadruplex DNA. CD studies revealed that bis‐indole carboxamide with a central pyridine ring induces the formation of a single, antiparallel, conformation of the h‐telo quadruplex in the presence and absence of added salt. The chirality of h‐telo quadruplex was transferred to the achiral ligand (induced CD) and the formation of a preferred atropisomer was observed.  相似文献   

11.
12.
G-rich DNA sequences are able to fold into structures called G-quadruplexes. To obtain general trends in the influence of loop length on the structure and stability of G-quadruplex structures, we studied oligodeoxynucleotides with random bases in the loops. Sequences studied are dGGGW(i)GGGW(j)GGGW(k)GGG, with W = thymine or adenine with equal probability, and i, j, and k comprised between 1 and 4. All were studied by circular dichroism, native gel electrophoresis, UV-monitored thermal denaturation, and electrospray mass spectrometry, in the presence of 150 mM potassium, sodium, or ammonium cations. Parallel conformations are favored by sequences with short loops, but we also found that sequences with short loops form very stable multimeric quadruplexes, even at low strand concentration. Mass spectrometry reveals the formation of dimers and trimers. When the loop length increases, preferred quadruplex conformations tend to be more intramolecular and antiparallel. The nature of the cation also has an influence on the adopted structures, with K(+) inducing more parallel multimers than NH4(+) and Na(+). Structural possibilities are discussed for the new quadruplex higher-order assemblies.  相似文献   

13.
Recently, we observed the first example of a left‐handed G‐quadruplex structure formed by natural DNA, named Z‐G4. We analysed the Z‐G4 structure and inspected its primary 28‐nt sequence in order to identify motifs that convey the unique left‐handed twist. Using circular dichroism spectroscopy, NMR spectroscopy, and X‐ray crystallography, we revealed a minimal sequence motif of 12 nt (GTGGTGGTGGTG) for formation of the left‐handed DNA G‐quadruplex, which is found to be highly abundant in the human genome. A systematic analysis of thymine loop mutations revealed a moderate sequence tolerance, which would further broaden the space of sequences prone to left‐handed G‐quadruplex formation.  相似文献   

14.
A knot‐like G‐quadruplex peripheral structure is formed by a 7‐nt DNA sequence DL7 (TGTTGGT), in which six out of its seven nucleobases participate in compact base‐pairing interactions. Here, the solution NMR structure of a 24‐nt DNA oligonucleotide containing the DL7 sequence shows the interaction between a two‐layer anti‐parallel G‐quadruplex core and the peripheral knot‐like structure, including the construction of two sharp turns in the DNA backbone. The formation of this novel structural element highlights the intricate properties of single‐stranded DNA folding in presence of G‐quadruplex‐forming motifs. We demonstrated the compatibility of the DL7 knot‐like structure with various G‐quadruplexes, which could have implications in drug design and DNA engineering.  相似文献   

15.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

16.
Aptamer‐based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G‐quadruplex‐forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5′ end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G‐quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion‐sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox‐active responsive devices.  相似文献   

17.
While is it well known that human telomeric DNA sequences can adopt G‐quadruplex structures, some promoters sequences have also been found to form G‐quadruplexes, and over 40% of promoters contain putative G‐quadruplex‐forming sequences. Because UV light has been shown to crosslink human telomeric G‐quadruplexes by cyclobutane pyrimidine dimer (CPD) formation between T's on adjacent loops, UV light might also be able to photocrosslink G‐quadruplexes in promoters. To investigate this possibility, 15 potentially UV‐crosslinkable G‐quadruplex‐forming sequences found in a search of human DNA promoters were UVB irradiated in vitro, and three were confirmed to have formed nonadjacent CPDs by mass spectrometry. In addition to nonadjacent T=T CPDs found in human telomeric DNA, a nonadjacent T=U CPD was discovered that presumably arose from deamination of a nonadjacent T=C CPD. Analysis of the three sequences by circular dichroism, melting temperature analysis and chemical footprinting confirmed the presence of G‐quadruplexes that could explain the formation of the nonadjacent CPDs. The formation of nonadjacent CPDs from the sequences in vitro suggests that they might be useful probes for the presence of non‐B DNA structures, such as G‐quadruplexes, in vivo, and if they were to form in vivo, might also have significant biological consequences.  相似文献   

18.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

19.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

20.
We have evaluated the conformational, thermal, and kinetic properties of d(TGGGGT) analogues with one or five of the ribose nucleotides replaced with the carbohydrate residues hexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA), or altritol nucleic acid (ANA). All of the modified oligonucleotides formed G‐quadruplexes, but substitution with the six‐membered rings resulted in a mixture of G‐quadruplex structures. UV and CD melting analyses showed that the structure formed by d(TGGGGT) modified with HNA was stabilized whereas that modified with CeNA was destabilized, relative to the structure formed by the unmodified oligonucleotide. Substitution at the fourth base of the G‐tract with ANA resulted in a greater stabilization effect than substitution at the first G residue; substitution with five ANA residues resulted in significant stabilization of the G‐quadruplex. A single substitution with CeNA at the first base of the G‐tract or five substitutions with HNA resulted in striking deceleration or acceleration of G‐quadruplex formation, respectively. Our results shed light on the effect of the sugar moiety on the properties of G‐quadruplex structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号