共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexander L. Gulledge Bin Gu Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2012,50(2):306-313
A new sequence isomer of AB‐polybenzimidazole (AB‐PBI) was developed as a candidate for high‐temperature polymer electrolyte membrane fuel cells. A diacid monomer, 2,2′‐bisbenzimidazole‐5,5′‐dicarboxylic acid, was synthesized and polymerized with 3,3′,4,4′‐tetraaminobiphenyl to prepare a polymer that was composed of repeating 2,5‐benzimidazole units. In contrast to previously prepared AB‐PBI, which contains only head‐to‐tail benzimidazole sequences, the new polymer also contains head‐to‐head and tail‐to‐tail benzimidazole sequences. The polymer was prepared in polyphosphoric acid (PPA) and cast into membranes using the sol–gel PPA process. Membranes formed from the new AB‐PBI were found to be mechanically stronger, possessed higher acid doping levels, and showed improved fuel cell performance, when compared to the previously known AB‐PBI. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
2.
Guoqing Qian Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2009,47(16):4064-4073
A high molecular weight, thermally and chemical stable hexafluoroisopropylidene containing polybenzimidazole (6F‐PBI) was synthesized from 3,3′‐diaminobenzidine (TAB) and 2,2‐bis(4‐carboxyphenyl) hexafluoropropane (6F‐diacid) using polyphosphoric acid (PPA) as both the polycondensation agent and the polymerization solvent. Investigation of polymerization conditions to achieve high molecular weight polymers was explored via stepwise temperature control, monomer concentration in PPA, and final polymerization temperature. The polymer characterization included inherent viscosity (I.V.) measurement and GPC as a determination of polymer molecular weight, thermal and chemical stability assessment via thermo gravimetric analysis and Fenton test, respectively. The resulting high molecular weight polymer showed excellent thermal and chemical stability. Phosphoric acid doped 6F‐PBI membranes were prepared using the PPA process. The physiochemical properties of phosphoric acid doped membranes were characterized by measuring the phosphoric acid doping level, mechanical properties, and proton conductivity. These membranes showed higher phosphoric acid doping levels and higher proton conductivities than the membranes prepared by the conventional membrane fabrication processes. These membranes had sufficient mechanical properties to be easily fabricated into membrane electrode assemblies (MEA) and the prepared MEAs were tested in single cell fuel cells under various conditions, with a focus on the high temperature performance and fuel impurity tolerance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4064–4073, 2009 相似文献
3.
Jacquelyn A. Carioscia Lauren Schneidewind Casey O'Brien Robert Ely Caitlin Feeser Neil Cramer Christopher N. Bowman 《Journal of polymer science. Part A, Polymer chemistry》2007,45(23):5686-5696
The ability to prepare high Tg low shrinkage thiol–ene materials is attractive for applications such as coatings and dental restoratives. However, thiol and nonacrylated vinyl materials typically consist of a flexible backbone, limiting the utility of these polymers. Hence, it is of importance to synthesize and investigate thiol and vinyl materials of varying backbone chemistry and stiffness. Here, we investigate the effect of backbone chemistry and functionality of norbornene resins on polymerization kinetics and glass transition temperature (Tg) for several thiol–norbornene materials. Results indicate that Tgs as high as 94 °C are achievable in thiol–norbornene resins of appropriately controlled chemistry. Furthermore, both the backbone chemistry and the norbornene moiety are important factors in the development of high Tg materials. In particular, as much as a 70 °C increase in Tg was observed in a norbornene–thiol specimen when compared with a sample prepared using allyl ether monomer of analogous backbone chemistry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5686–5696, 2007 相似文献
4.
Xiuhua Li Yan Gao Qiang Long Allan S. Hay 《Journal of polymer science. Part A, Polymer chemistry》2014,52(12):1761-1770
Four different fluorinated methyl‐ and phenyl‐substituted 4‐(4‐hydroxyphenyl)‐2‐(pentafluorophenyl)‐phthalazin‐1(2H)‐ones, AB‐type phthalazinone monomers, have been successfully synthesized by nucleophilic addition–elimination reactions of methyl‐ and phenyl‐substituted 2‐((4‐hydroxy)benzoyl)benzoic acid with 1‐(pentafluorophenyl)hydrazine. Under mild reaction conditions, the AB‐type monomers underwent self‐condensation polymerization reactions successfully and gave fluorinated poly(phthalazinone ether)s with high molecular weights. Detailed structural characterization of the AB‐type monomers and fluorinated polymers was determined by 1H NMR, 19F NMR, FTIR, and GPC. The solubility, thermal properties, mechanical properties, water contact angles, and optical absorption of the polymers were evaluated. The polymers had high Tgs varying from 337 to 349 °C and decomposition temperatures (Td, 25 wt %) above 409 °C. Tough, flexible films were cast from THF and chloroform solutions. The films showed excellent tensile strengths ranging from 70 to 85 MPa with good hydrophobicities with water contact angles higher than 95.5 °C. The polymers had absorption edges below 340 nm and very low absorbance per cm at higher wavelengths 500–2500 nm. These results indicate that the polymers are promising as high performance materials, for example, membranes and hydrophobic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1761–1770 相似文献
5.
Hongting Pu Lin Wang Haiyan Pan Decheng Wan 《Journal of polymer science. Part A, Polymer chemistry》2010,48(10):2115-2122
Two new kinds of fluorine‐containing polybenzimidazoles (PBI), poly(2,2′‐(tetrafluoro‐p‐phenylene)‐5,5′‐bibenzimidazole) and poly(2,2′‐tetradecafluoroheptylene‐5,5′‐bibenzimidazole), were synthesized by condensation polymerization of 3,3′‐diaminobenzidine and perfluoroterephthalic acid (or perfluoroazelaic acid), with polyphosphoric acid as solvent. Thermogravimetric analysis results show that the fluorine‐containing polymers synthesized exhibit promising thermal stability. The film‐forming properties of the fluorine‐containing polymers are improved over nonfluorinated PBI. The introduction of fluorine into the backbone of the polymers has significant positive affection on their chemical oxidation stability demonstrated by Fenton test. Compared with poly(2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole)/phosphoric acid (PA) composite membrane, the resulting fluorinated membranes with a same PA doping level exhibit better flexibility and higher proton conductivity. The maximum proton conductivity gained is 3.05 × 10?2 S/cm at 150 °C with a PA doping level of 7. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2115–2122, 2010 相似文献
6.
Lin Cheng Lei Ying Juan Feng Chen Yi Wang Jian Ling Li Zhen Xu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(8):1525-1535
Based on green chemistry, a simple and efficient direct synthesis of 4‐(4′‐hydroxyaryl)(2H)phthalazin‐1‐ones ( 2a–2f ) was developed in a two‐step reaction, in which the Friedel–Crafts acylation reaction of six phenols with phthalic anhydride was initially carried out and then followed by cyclization with hydrazine hydrate in good to excellent yields with high regioselectivity. A number of novel heterocyclic poly(arylene ether ketone)s were prepared conveniently from several unsymmetrical, twist, and noncoplanar phthalazinone‐containing monomers ( 2a–2f ) and an activated difluoro monomer via a N? C coupling reaction. It was very interesting that the obtained monomers and polymers exhibited diverse properties with the variation of the number and location of the substituted methyl groups. All these polymers had a high molecular weight with Mn and ηinh in the range of 44,960–169,000 Da and 0.38–0.79 dL/g, respectively. Actually, the obtained polymers displayed excellent thermal properties with Tg's ranging from 222 to 248 °C and 5% weight loss temperatures in nitrogen higher than 430 °C. Moreover, these polymers were readily soluble in common organic solvents, such as N‐methyl‐2‐pyrrolidone, chloroform, pyridine, and m‐cresol, and could be cast into flexible and colorless or nearly colorless films by spin‐coating or casting processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1525–1535, 2007 相似文献
7.
Kelly A. Perry Karren L. More E. Andrew Payzant Roberta A. Meisner Bobby G. Sumpter Brian C. Benicewicz 《Journal of Polymer Science.Polymer Physics》2014,52(1):26-35
Phosphoric acid (PA)‐doped m‐polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol–gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol–gel PA‐doped m‐PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol–gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes with ≤29 wt % solids caused a significant reduction in mechanical properties; conversely, sol–gel membranes exhibited an enhancement in mechanical properties. From X‐ray structural studies and atomistic simulations, both conventionally imbibed and sol–gel membranes exhibited d‐spacings of 3.5 and 4.6 Å, which were tentatively attributed to parallel ring stacking and staggered side‐to‐side packing, respectively, of the imidazole rings in these aromatic heterocyclic polymers. An anisotropic staggered side‐to‐side chain packing present in the conventional membranes may be related to the reduction in mechanical properties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Polym. Phys. 2014 , 52, 26–35 相似文献
8.
Christina Morfopoulou Aikaterini K. Andreopoulou Joannis K. Kallitsis 《Journal of polymer science. Part A, Polymer chemistry》2011,49(20):4325-4334
Three series of new aromatic polyether sulfones bearing phenyl, p‐tolyl or carboxyl side groups, respectively, and polar pyridine main chain groups were developed. Most of the polymeric materials presented high molecular weights and excellent solubility in common organic solvents. More importantly, they formed stable, self‐standing membranes that were thoroughly characterized in respect to their thermal, mechanical and oxidative stability, their phosphoric acid doping ability and ionic conductivity. Particularly, the copolymers bearing side p‐tolyl or carboxyl groups fulfill all necessary requirements for application as proton electrolyte membranes in high temperature fuel cells, which are glass transition temperatures higher than 220 °C, thermal stability up to 400 °C, oxidative stability, high doping levels (DLs) and proton conductivities of about 0.02 S/cm. Initial single fuel cell results at high temperatures, 160 °C or 180 °C, using a copolymer bearing p‐tolyl side groups with a relatively low DLs around 200 wt % and dry H2/Air feed gases, revealed efficient power generation with a current density of 0.5 A/cm2 at 500 mV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
9.
Yuhua Tong Feng Gao Yongqing Huang Scott R. Schricker Bill M. Culbertson 《先进技术聚合物》2002,13(5):311-319
Six new ether‐linked bisoxazolines have been synthesized via reaction of p‐hydroxyphenyl‐2‐oxazoline with dihalides. These bisoxazolines may be used as chain extenders or crosslinkers for resins, monomers or polymers containing various acidic groups, including phenolics, via step‐growth (1 : 1) reactions. As an illustration, a phenol‐formaldehyde polycondensate (Alnovol) and an enzyme oligomerized bisphenol A resin, as well as poly (p‐hydroxystyrene), was chain extended and crosslinked to produce thermosets with high glass transition temperatures. The new bisoxazolines were also polymerized with diphenol compounds, such as diphone D and bisphenol P to generate linear or branched oligomers and polymers. Differential scanning calorimetry was used to evaluate the potential for polymerization and crosslinking reactions. Preliminary results showed that the new, ether‐linked bisoxazolines have potential for formulating high performance thermosets. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
10.
Annabelle Scarpaci Clement Cabanetos Errol Blart Véronique Montembault Laurent Fontaine Vincent Rodriguez Fabrice Odobel 《Journal of polymer science. Part A, Polymer chemistry》2009,47(21):5652-5660
A one‐pot synthetic route based on copper‐catalyzed Huisgen reaction has been developed to functionalize a methacrylate propargylic polymer with azido‐substituted moieties. This procedure was used for the preparation of electro‐optic materials containing well‐known Disperse Red One (DR1) chromophores along with bulky adamantyl moieties (Adam). The postfunctionalization of the propargylic polymer was successfully achieved using different molar ratios of DR1/Adam. These novel polymers exhibit high glass transition temperature owing to the rigid structure of adamantyl units. Moreover, the second harmonic generation measurements demonstrated the effectiveness of adamantyl groups to act as insulating shield limiting thus the electrostatic interactions between chromophores. Indeed, higher optimal chromophore concentration (50 mol %) than in conventional DR1‐containing polymers (30 mol %) allowed us to increase the d33 coefficient up to 92 pm/V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5652–5660, 2009 相似文献
11.
Frank Schönberger Guoqing Qian Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2017,55(11):1831-1843
In this study, PBI‐based block copolymers were developed and their performance as membranes in high temperature polymer electrolyte membrane fuel cells was evaluated. This type of block copolymer consists of “phosphophilic” PBI and “phosphophobic” non‐PBI segments. The final properties of such block copolymers strongly depended on the length of the individual blocks and their chemical structures. In a systematic approach, a series of various block copolymers was synthesized and characterized both in terms of ex situ properties (e.g., proton conductivity, phosphoric acid uptake, swelling behavior) and in situ fuel cell tests. A very poor membrane‐electrode interface limited the performance of the membrane electrode assemblies, but was remarkably improved in power output, stability, and long‐term durability by treating the electrode interface with a fluorinated PBI derivative. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1831–1843 相似文献
12.
Amy E. Eichstadt Thomas C. Ward Melanie D. Bagwell Isaac V. Farr Debra L. Dunson James E. McGrath 《Journal of Polymer Science.Polymer Physics》2002,40(14):1503-1512
High molecular weight, soluble, amorphous, partially aliphatic polyimides were successfully synthesized using an ester acid high‐temperature solution imidization route, which allows one to control desired glass‐transition (Tg) and processing temperatures. This method involves the prereaction of aromatic dianhydrides with ethanol and a tertiary amine catalyst to form ester acids, followed by the addition of diamines. Subsequent thermal reaction forms fully cyclized polyimides. This reaction pathway eliminates the need for anhydrous solvents and overcomes the problem of salt formation commonly observed for nucleophilic, more‐basic aliphatic amines when utilizing the traditional polyamic acid synthesis route. The molar ratio of aromatic‐to‐aliphatic diamines was varied to generate a series of copolyimides with the chosen dianhydride and tailor the physical properties for specific adhesive applications. This series of copolyimides was characterized by their molecular weight, Tg, thermal stability, coefficient of thermal expansion, refractive index, and dielectric constant. Structure‐property relationships were established. The γ and β sub‐Tg viscoelastic properties were researched to understand their molecular origins. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1503–1512, 2002 相似文献
13.
Tom Nilges 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(6):609-609
Rare‐earth‐transition metal pnictides and related compounds are intriguing materials with a wide range of possible applications. Gd6FeBi2 [Zhang et al. (2019). Acta Cryst. C 75 , 562–567] might be useful for a plethora of applications and this article may help to initiate first efforts in that direction. 相似文献
14.
J. J. Fontanella D. A. Boyles T. S. Filipova S. Awwad C. A. Edmondson J. T. Bendler M. C. Wintersgill J. F. Lomax M. J. Schroeder 《Journal of Polymer Science.Polymer Physics》2012,50(4):289-304
The relative permittivity, loss, and breakdown strength are reported for a commercial sample of bisphenol A‐polycarbonate (comm‐BPA‐PC) and a purified sample of the same polymer (rp‐BPA‐PC) as well as for two new polycarbonates having low molecular cross‐sectional areas, namely a copolymer of tetraaryl polycarbonate and BPA‐PC (TABPA‐BPA‐PC) and a triaryl polycarbonate homopolymer (TriBPA‐PC). The glass transition temperatures of the new polymers are higher than the Tg of BPA‐PC (187 and 191 °C vs. 148 °C). Relative permittivity and loss measurements were carried out from 10 to 105 Hz over a wide temperature range, and results for the α‐ and γ‐relaxation regions are discussed in detail. For the α‐relaxation, the isochronal peak position, Tα, scales approximately with Tg. On the other hand, the peak temperature for the γ‐relaxation is approximately constant, independent of Tg. Also, in contrast to what is observed for α, γ exhibits a strong increase in peak height as temperature/frequency increases and a significant difference is found between Arrhenius plots determined from isochronal and isothermal data analyses. Next, the γ‐relaxation region for comm‐BPA‐PC and associated activation parameters show strong history/purity effects. The activation parameters also depend on the method of data analysis. The results shed light on discrepancies that exist in the literature for BPA‐PC. The shapes of the γ loss peaks and hence glassy‐state motions for all the polymers are very similar. However, the intensities of the TriBPA‐PC and TABPA‐BPA‐PC γ peaks are reduced by an amount that closely matches the reduced volume fraction of carbonate units in the two new polymers. Finally, for comm‐BPA‐PC, the breakdown strength is strongly affected by sample history and this is assumed to be related to volatile components in the material. It is found that the breakdown strengths for TriBPA‐PC and TABPA‐BPA‐PC are relatively close to that for rp‐BPA‐PC with the value for TriBPA‐PC being slightly larger than that for rp‐BPA‐PC or the value usually reported for typical capacitor grade polycarbonate. Finally, it is shown that the real part of the relative permittivity remains relatively constant from low temperatures to Tg. Consequently, based on the dielectric properties, TriBPA‐PC and TABPA‐BPA‐PC should be usable in capacitors to at least 50 °C higher than BPA‐PC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
15.
Elefterios K. Pefkianakis Valadoula Deimede Maria K. Daletou Nora Gourdoupi Joannis K. Kallitsis 《Macromolecular rapid communications》2005,26(21):1724-1728
Summary: Novel poly(aryl ether sulfone) copolymers containing 2,5‐biphenylpyridine and tetramethyl biphenyl moieties were synthesized by polycondensation of 4‐fluorophenyl sulfone with 2,5‐(4′,4″ dihydroxy biphenyl)pyridine and tetramethyl biphenyl diol. Copolymers with different molecular weights and different monomer compositions were obtained. These copolymers exhibit excellent film‐forming properties, mechanical integrity, and high modulus up to 250 °C, high glass transition temperatures (above 280 °C) as well as high thermal stability up to 400 °C. In addition to the above properties required for PEMFC application, this novel material shows high oxidative stability and acid doping ability, enabling proton conductivity in the range of 10−2 S · cm−1 above 130 °C.
16.
K. Kaushlendra V. D. Deepak S. K. Asha 《Journal of polymer science. Part A, Polymer chemistry》2011,49(7):1678-1690
Pyrene was incorporated as pendant unit to side‐chain urethane methacrylate polymers having a short ethyleneoxy or a long polyethyleneoxy spacer segment. The short‐spacer pyrene urethane methacrylate was also incorporated either as block or random copolymer (1:9) along with polystyrene. The excimer emission was observed to be different for different polymers with the random copolymer exhibiting the lowest efficiency. But, the total quantum yield was highest (? = 0.58) for random copolymer due to the high emission coefficient of monomer compared to that of excimer. The polymer dynamics were compared by steady state emission and fluorescence decay in THF or THF/water (9:1) solvent mixture and films. The solid state decay profile showed decay without a rise time indicating presence of ground state aggregates. In THF/water (9:1), the decay profile at the excimer emission (500 nm) showed a rise time indicating dynamic excimers. The evolution of excimeric emission centred ~430 or ~480 nm as a function of temperature was also studied in THF/water (9:1). The IE/IM ratio for the λ343 nm excitation exhibited steady increase with temperature with the block copolymer PS‐b‐PIHP exhibiting the highest ratio and highest rate of increase; whereas, the random copolymer PS‐r‐PIHP had the lowest IE/IM ratios. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
17.
Brian Dillman Julie L. P. Jessop 《Journal of polymer science. Part A, Polymer chemistry》2013,51(9):2058-2067
The effects of chain transfer agents (CTA) on cationic ring‐opening polymerization of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were explored. EEC was polymerized in the presence of various CTAs, and epoxide conversions monitored via Raman spectroscopy. Polymer films were prepared and analyzed by dynamic mechanical analysis. Many of the organic alcohols studied greatly enhanced epoxide polymerization rates and conversion levels. The gel fraction of polymer specimens decreased rapidly with increasing amounts of octanol (gel fraction >90% up to 0.3 equiv OH) but remained high with increasing amounts of 1,2‐propanediol (gel fraction >90% up to 0.6 equiv OH). Increasing the size of primary alcohols had little effect on the polymerization rates and conversions. The polymerization rate decreased with increasing alcohol substitution (1°>2°>3°). Acidic alcohols had very low impact on conversion and polymerization rates relative to the neat epoxy resin. The glass transition temperature was inversely related to the size and amount of CTA. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
18.
Sheng‐Huei Hsiao Chin‐Ping Yang Sheng‐Ching Huang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2377-2394
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004 相似文献
19.
Kurt Van Durme Laureen Delellio Evgeny Kudryashov Vitaly Buckin Bruno Van Mele 《Journal of Polymer Science.Polymer Physics》2005,43(11):1283-1295
The ultrasonic properties of poly(N‐isopropyl acrylamide) (PNIPAM)/water solutions, determined with high‐resolution ultrasonic spectroscopy (HR‐US), change during demixing and remixing. All HR‐US measurements are discussed with respect to modulated temperature differential scanning calorimetry results. The lower critical solution temperature type of phase behavior, in combination with the glass‐transition/composition curve of PNIPAM/water, determines the evolution of the ultrasonic signals. Three different temperature regions can be distinguished: a homogeneous region and a heterogeneous region, the latter subdivided into zones without and with interference of partial vitrification of the PNIPAM‐rich phase. During phase separation, the ultrasonic velocity decreases because of a change in the hydration structure around the polymer chains, whereas the ultrasonic attenuation increases as aggregation sets in. Isothermal measurements clearly show time dependence for both the velocity and the attenuation. The observed timescales are different and can be related to a changing polymer/water interphase and aggregate formation, respectively. Partial vitrification of the PNIPAM‐rich phase slows the demixing kinetics and especially the remixing kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1283–1295, 2005 相似文献