首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The evolution of monomer droplets and latex particles of methyl methacrylate miniemulsions, initiated by an oil‐phase initiator, stabilized by a cationic surfactant mixture, and costabilized by different amounts of hexadecane, was investigated. With an increasing hexadecane concentration, the ultrasonication time required for the miniemulsions to reach a critically stabilized state was reduced, and a unimodal size distribution of the droplets with a decreasing average diameter was obtained. For lower hexadecane concentrations, a bimodal size distribution of the latex particles, with a significant increase in the volume fraction of the smaller latex particles, was achieved after the polymerization. The enhanced growth of the volume fraction of the smaller latex particles came from both nucleation of the shrinking droplets due to Ostwald ripening and homogeneous and/or micellar nucleation, if micelles existed, triggered by radicals in the aqueous phase. For high hexadecane concentrations, Ostwald ripening was effectively retarded, and the miniemulsions were sufficiently stabilized against the degradation of molecular diffusion. The size distributions of the droplets and latex particles were almost identical. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4603–4610, 2006  相似文献   

2.
Miniemulsions of methyl methacrylate with sodium lauryl sulfate as the surfactant and dodecyl mercaptan (DDM) as the cosurfactant (or hydrophobe) were prepared and polymerized. The emulsions were of a droplet size range common to miniemulsions and exhibited long-term stability (greater than 3 months). Results indicate that DDM retards Ostwald ripening and allows the production of stable miniemulsions. When these emulsions were initiated, particle formation occurred predominantly by monomer droplet nucleation. The effects of the concentration of surfactant, cosurfactant and initiator were determined. Rates of polymerization, monomer droplet sizes, polymer particle sizes, molecular weights of the polymer, and the effect of initiator concentration on the number of particles vary systematically in ways that indicate predominant droplet nucleation in these systems. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The Ostwald ripening behavior of the two-component miniemulsions of MMA/SMA, ST/SMA, MMA/LMA, and ST/LMA was investigated. Kabal'nov equation predicted the Ostwald ripening rate data reasonably well when the volume fraction of reactive costabilizer was lower than 0.02–0.03, but it failed to describe the experimental data over the whole costabilizer volume fraction range (0.01–0.05). An empirical equation with two adjustable parameters K1 and K2 was then proposed to adequately predict the Ostwald ripening rate data. The greater the value of K1 (or K2), the more effective is the costabilizer in stabilizing miniemulsion droplets against the diffusional degradation process.  相似文献   

4.
The Ostwald ripening behavior of ST or MMA miniemulsions stabilized by various types of costabilizers upon aging at 25°C was investigated. The general validity of the quadratic empirical model with two parameters K1 and K2 was verified and it showed great potential to describe the general features of the Ostwald ripening process involved in miniemulsions stabilized by a relatively wide range of volume fraction of costabilizer in the disperse phase. The greater the K1/RO,1 (or K2/RO,1) value, the more effective is the costabilizer in stabilizing miniemulsion droplets against the diffusional degradation process. RO,1 is the Ostwald ripening rate corresponding to the single component of ST (or MMA). Some useful correlations of the K1/RO,1 (or K2/RO,1) data with the water solubility (or solubility parameter) of the bulk costabilizer were established. Polymeric costabilizers showed quite different behavior in stabilizing miniemulsions compared to low molecular weight costabilizers. Incorporation of hydrophilic functional groups into the costabilizer structures greatly reduced their capabilities to enhance the storage stability of miniemulsion products.  相似文献   

5.
Summary: This paper presents the results of the preparation of miniemulsions as well as the subsequent copolymerizations of 2-ethyl hexyl acrylate and vinyl acetate. The miniemulsions were prepared using a mixture of an anionic and a non-ionic surfactant. Sodium dodecyl sulfate (SDS) was used as the anionic surfactant and two non-ionic surfactants were studied: Triton X-405 and Disponil A3065. The miniemulsions prepared with a 90/10 mol.-% Disponil A3065 were able to reach a kinetically-stable state to yield latexes with 43 wt.-% solids content with a maximum change in the number of particles (Np) with respect to the number of droplets (Nd) of ∼6%. A 23 factorial design was then used to discern the influence of monomer, chain transfer agent and surfactant concentration on the droplet size distribution (DSD) and particle size distribution (PSD). Pressure-sensitive adhesive (PSA) properties were also examined.  相似文献   

6.
Liquid nanodroplets within a size range of 50 to 500 nm can easily be prepared by shearing a system containing oil, water and a surfactant. The growth of the nanodroplets can effectively be suppressed by using a strong hydrophobe as an additivie to the oil and an effective surfactant. The hydrophobe acts as an osmotic agent which stabilizes the system against Ostwald ripening. The growth of the droplets by collision is controlled by the density of the surfactant layer. Freshly prepared miniemulsions are “critically stabilized” and show a slow, but pronounced growth, whereas a miniemulsion in “equilibrium” exhibits constant droplet size on longer time scales. Polymerization of the oil droplets of such miniemulsions turns out to be very promising and extends the possibilities of classical emulsion polymerization. Since each droplet can be considered a small reactor in which polymerization reactions take place, the process allows one to create new particle structures, e.g. polyaddition reactions can take advantage of unusual monomers, the incorporation of materials which are not soluble in the continuous phase, and the formation of nanocapsules.  相似文献   

7.
Oil-in-water emulsions of slightly soluble oils such as tetralin prepared by high-pressure homogenization and stabilized by sodium dodecyl sulfate undergo depletion flocculation induced by an initially polydisperse droplet size distribution. The smaller droplets flocculate the larger ones; the flocculation can be reversed by gentle sonication. After aging, the flocs disappear because the smaller droplets dissolve through Ostwald ripening. These effects were observed by electroacoustic measurements, supplemented by light scattering.  相似文献   

8.
In this research, oil‐based Fe3O4 nanoparticles were prepared by means of coprecipitation method followed by a surface modification using lauric acid. Oil‐based Fe3O4 could disperse in styrene, and polystyrene/Fe3O4 (PS/Fe3O4) composite particles were prepared via miniemulsion polymerization in the presence of potassium peroxide (KPS) as an initiator, sodium dodecyl sulphate as a surfactant, hexadecane or sorbitan monolaurate(Span 20) as a costabilizer. The effects of Fe3O4 content, homogenization energy, amount of initiator, amount of surfactant and costabilizer on the conversion, size distributions of droplets and latex particles, nucleation mechanism and morphology of composite latex particles were investigated. The results showed that different nucleation mechanisms dominated during the course of reaction when polymerization conditions changed. The most important two key factors to influence the nucleation mechanism were homogenization energy and initiator. High homogenization energy provided critically stabilized size of droplets. Otherwise, secondary nucleation, including micellar and/or homogeneous nucleation, would take place rather than droplet nucleation when a water‐soluble initiator, KPS, was used. It resulted in two populations of latex particles, pure PS particles in smaller size and PS/Fe3O4 composite particles in larger size. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1014–1024, 2008  相似文献   

9.
Two types of hybrid acrylic nanoparticles based on biodegradable and biocompatible polymers, cellulose ester and poly(ε-caprolactone), were produced via miniemulsification through high-pressure homogenization. An efficient emulsification procedure was first devised to yield high-solids-content polymer–monomer waterborne miniemulsions, and the fundamental parameters governing the stability of these composite miniemulsions were assessed. In addition, strategies to control the droplet size were investigated upon varying several experimental parameters such as the interfacial tension between the organic and the aqueous phase, the organic phase viscosity and the nature/concentration of surfactant. A series of thermally initiated polymerizations were then performed to produce nanosized hybrid particles.  相似文献   

10.
The instability of nanoemulsions were mainly due to Ostwald ripening. The droplet charge was influenced by the stability of nanoemulsions significantly. In this work, the properties of the shea butter oil-loaded nanoemulsions were investigated in detail with the addition of cationic surfactants (cetyl trimethyl ammonium chloride, 1631; octadecyl trimethyl ammonium chloride, 1831), anionic surfactants (alcohol ethoxysulfate, AES; dodecyl phosphate ester sodium salt, MAP), and zwitterionic surfactants (cocoamidopropyl betaine, CAB; dodecyl hydroxysulfobetaine, 20HD). By increasing the concentration of cationic surfactants, the positively charged nanoemulsions were prepared and the smallest droplets were being formed with 0.05% 1831. Upon the addition of anionic surfactants, a more negative value was obtained and the smallest droplets were being formed with 0.1% AES. The ionic surfactants by increasing the electrostatic interactions between droplets and incorporation into the oil phase improved the stability of the nanoemulsions via lowering the Ostwald ripening rate, and especially improved the high temperature stability. By increasing the concentration of zwitterionic surfactants, a less negative zeta potential was observed and the stability of the nanoemulsions did not improve. The results proved that the electrosteric repulsion had an appreciable impact on the stability of the nanoemulsions.  相似文献   

11.
A series of miniemulsion systems based on styrene/azobisisobutyronitrile in the presence of poly(methyl methacrylate‐b‐2‐(dimethylamino)ethyl methacrylate) as a surfactant and hexadecane (HD) as a cosurfactant were developed. For comparison, a series of pseudoconventional emulsions also were carried out with the same procedure used for the aforementioned series but without the cosurfactant (HD). Both the droplet size and shelf life were also measured. Experimental results indicate that it is possible to slow the effect of Ostwald ripening and thereby produce a stable miniemulsion with the block copolymer as the surfactant and HD as the cosurfactant. In addition, the extent to which varying the surfactant concentration and copolymer composition could affect both the polymer particle size during the polymerization and the polymerization rate was examined. Variation in the polymer particle sizes during polymerization indicates that droplet and aqueous (micellar or both homogeneous) nucleation occurs in the miniemulsion polymerization. With the same concentration of the surfactant used in the miniemulsion polymerization, the polymerization rates of systems with M12B36 are faster than those of systems with M12B12. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1818–1827, 2000  相似文献   

12.
When finally processed to provide the function for which the latex was selected―binding, protecting, finishing―components such as surfactant, costabilizer or initiator become generally useless, not to say detrimental. In this study, we show that miniemulsion photopolymerization provides a suitable method to create latex without the apparent addition of these three compounds. Indeed, UV-driven monomer self-initiation can create initiating radicals without the aid of initiator, the fast in situ photogenerated polymer can hinder Ostwald ripening with the assistance of external costabilizer, and finally, UV-transparent clay can replace conventional surfactant to ensure colloidal stabilization. Each strategy has been developed individually before being combined together to end up with a unique miniemulsion procedure free of initiator, costabilizer and surfactant. Such approach paves the way to a simplified and environmentally improved pathway towards aqueous polymer dispersions.  相似文献   

13.
The colloidal stability of miniemulsions in the presence of RAFT or other control agents for controlled free radical polymerization is examined. A derivation, based on Lifshitz-Slyozov-Wagner (LSW) theory, is proposed here to evaluate the effect of a RAFT agent on the diffusional stability of the miniemulsions before the onset of polymerization. Results indicate that, depending on the hydrophobicity of the control agent, its presence may augment or detract from the effectiveness of the costabilizer in preventing diffusional instability due to Ostwald ripening.  相似文献   

14.
This work investigates the feasibility of implementing conductivity measurements for the purpose of the on-line monitoring of particle generation by following the evolution of free surfactant concentration during SDS/styrene emulsion polymerisations. The conductivity and temperature were measured on-line during the reactant addition and reaction stages of a number of batch emulsion polymerisations. Samples were collected for off-line analysis of particle size and conversion. Observation of the evolution of the conductivity enabled us to measure the effect of surfactant and monomer addition. The maximum size of the monomer droplets was calculated from the decrease in conductivity that represented the adsorption of surfactant molecules onto the droplet surface. The division of SDS between the particle interface and the aqueous phase was also determined giving an indication of the particle stability.  相似文献   

15.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

16.
Summary: Static mixers (Sulzer Chemtech; SMX) were used to prepare silica/ MMA-co-BA miniemulsions that were polymerized to produce nanocomposite latexes. Acceptable conditions for the formulation of polymerizable nanodroplets were found and subsequently used to produce silica/poly(MMA-co-BA) nanocomposites. The droplet size distribution of the resulting miniemulsions was narrow enough that it could be successfully polymerized. It was found that the droplet size depends on the silica content and increases with increasing the silica concentration. It was also shown that there is a relationship between the droplet size and the viscosity of the dispersed phase. The majority of droplets were nucleated upon polymerization when less than 15% silica was used. However, when the silica content exceeded 15%, the ratio of the number of particles in the final latex to the number of droplets (Np/Nd) increased to value much higher than 1 indicating the occurrence of homogeneous nucleation.  相似文献   

17.
Paraffin oil-in-water nano-emulsions stabilized by Tween 80/Span 80 were prepared using the emulsion inversion point method at different emulsification temperatures. Nano-emulsions with droplet size below 200 nm were formed above a critical surfactant-to-oil ratio of 0.20 at 50 degrees C. The main destabilization mechanism of the systems was found to be Ostwald ripening. An interesting phenomenon was that the Ostwald ripening rate declined as the surfactant concentration rose. Furthermore, flocculation was also found to contribute to the instability of the nano-emulsions, especially for those with low surfactant concentrations. Study on the electrophoretic properties of emulsion droplets revealed a negative value of the zeta potential, which was strongly dependent on the pH of the systems.  相似文献   

18.
以十二烷基苯磺酸钠(SDBS)为乳化剂,硫酸或盐酸为催化剂,八甲基环四硅氧烷(D4)为单体,十六烷为共稳定剂,超声预乳化,制备了聚硅氧烷细乳液,研究了超声时间、催化剂用量、乳化剂用量和温度对聚合动力学的影响.结果表明,在一定酸度范围内,聚合速度与硫酸浓度0.81次方、与盐酸浓度1.02次方、与乳化剂浓度-0.66次方成正比,反应的表观活化能为40.56kJ/mol.  相似文献   

19.
 Stable styrene miniemulsions were prepared by using alkyl methacrylates as the reactive cosurfactant. Like conventional cosurfactants (e.g., cetyl alcohol (CA) and hexadecane (HD)), alkyl methacrylates (e.g., dodecyl methacrylate (DMA) and stearyl methacrylate (SMA)) may act as a cosurfactant in stabilizing the homogenized miniemulsions. Furthermore, the methacrylate group may be chemically incorporated into latex particles in subsequent miniemulsion polymerization. The data of the monomer droplet size, creaming rate and phase separation of monomer as a function of time were used to evaluate the shelf-life of miniemulsions stabilized by sodium dodecyl sulfate in combination with various cosurfactants. Polystyrene latex particles were produced via both monomer droplet nucleation and homogeneous nucleation in the miniemulsion polymerization using CA or DMA as the cosurfactant, with the result of a quite broad particle size distribution. On the other hand, the miniemulsion polymerization with HD or SMA showed a predominant monomer droplet nucleation. The resultant particle size distribution was relatively narrow. In miniemulsion polymerization, the less hydrophobic DMA is similar to CA, whereas the more hydrophobic SMA is similar to HD. Received: 19 November 1996 Accepted: 20 February 1997  相似文献   

20.
The copolymers of methyl methacrylate (MMA) (or styrene (ST))/stearyl methacrylate (SMA) obtained from miniemulsion polymerization were prepared and characterized. All the miniemulsions showed satisfactory colloidal stability upon aging due to the effectively retarded Ostwald ripening by the reactive costabilizer SMA. In subsequent miniemulsion copolymerizations, monomer droplet nucleation predominated in the particle formation process, but homogeneous nucleation could not be ruled out even at such high levels of SMA (20–50 wt.%). The contact angle first increased rapidly and then leveled off when the SMA content increased from 20 to 50 wt.% for both the copolymers of MMA/SMA and ST/SMA. At constant level of SMA, the copolymer of MMA/SMA with a less hydrophobic composition showed a larger contact angle compared to the ST/SMA counterpart. The contact angle (103 ± 1°) of the copolymer MMA/SMA (50/50 w/w) was comparable to that (104°) of PSMA. A schematic model was proposed to explain the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号