首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

2.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

5.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

6.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
A series of new alkyl mono‐ and bimetallic aluminum complexes supported by novel amidinate ligands has been prepared in very high yields. These complexes were fully characterized by spectroscopic methods. Alkyl aluminum complexes 1 – 6 were investigated as catalysts for the ring‐opening polymerization and copolymerization of ε‐caprolactone and L‐lactide. Under the optimal reaction conditions, complex 5 acts as an efficient single‐component initiator for the ring‐opening polymerization and copolymerization of cyclic esters to yield biodegradable polyester materials with narrow polydispersities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2397–2407  相似文献   

8.
The ring‐opening polymerizations (ROPs) of εcaprolactone (ε‐CL) and L ‐lactide (LLA) have been studied using the organocatalysts of diphenyl phosphate (DPP) and 4‐dimethylaminopyridine (DMAP). The “dual activation” property of DPP and the “bifunctional activation” property of DPP/DMAP were confirmed by the NMR measurement for ε‐CL and its chain‐end model of poly(ε‐caprolactone) and for LLA and its chain‐end model of poly(L ‐lactide) (PLLA), respectively. The molar ratio of DPP/DMAP was optimized as 1/2 for the ROP of LLA leading to the well‐defined PLLA, such as the molecular weight determined from 1H NMR measurement of 19,200 g mol?1 and the narrow polydispersity of 1.10. Additionally, functional initiators were utilized for producing the end‐functionalized PLLAs. The DPP‐catalyzed ROPs of ε‐CL and its analogue cyclic monomers and then the DPP/DMAP‐catalyzed ROP of LLA produced block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1047–1054  相似文献   

9.
New aluminum alkyl complexes, supported by o‐phenylene‐derived phosphido diphosphine pro‐ligands [Ph‐PPP]‐H and [iPr‐PPP]‐H ([Ph‐PPP]‐H = bis(2‐diphenylphosphinophenyl)phosphine; [iPr‐PPP]‐H = bis(2‐diisopropylphosphinophenyl)phosphine) are reported. Compounds [Ph‐PPP]AlMe2 ( 1 ), [iPr‐PPP]AlMe2 ( 2 ), and [Ph‐PPP]AliBu2 ( 3 ) have been synthesized by reaction of the pro‐ligand with the appropriate trialkyl aluminum precursor and have been characterized by 1H, 13C and 31P NMR spectroscopy. The solution NMR data and theoretical calculations suggest for all complexes trigonal bipyramidal structures with C2v symmetry in which the phosphido diphosphine ligand acts as a κ3 coordinated ligand. All complexes promote the ring‐opening polymerization of ε‐caprolactone, L‐ and rac‐lactide. Polyesters with controlled molecular parameters (Mn, end groups) and low polydispersities are obtained. Upon addition of isopropanol, efficient binary catalytic systems for the immortal ring‐opening polymerization of the cyclic esters are produced. Preliminary investigations show the ability of these complexes to promote copolymerization of l ‐lactide and ?‐caprolactone to achieve copolymers whose microstructures are depending on the structure of the catalyst. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 49–60  相似文献   

10.
Phosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1 : M = Y, 2 : M = Sc; R = iPr, 3 : M = Y, 4 : M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L ‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (~4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L ‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L ‐ and D ,L ‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The homopolymerization reactions of several lactones, as well as the copolymerization reactions of DL‐lactide with these lactones were investigated using tridentate Schiff base aluminum complexes as the initiators. ε‐Caprolactone and δ‐valerolactone polymerized efficiently at room temperature to afford polyesters, whereas β‐butyrolactone only gave the corresponding oligomer. The copolymerization reactions of DL‐lactide with caprolactone and valerolactone yielded gradient block copolymers where the lactyl blocks formed crystalline stereoblocks as a consequence of the stereoselective polymerization of DL‐lactide in the presence of the aluminum complexes. These polymerization processes were highly controlled in nature, and block copolymerization where caprolactone copolymerized using poly(DL‐lactide)‐Al complex proceeded. The obtained gradient copolymer containing stereoblock lactyl blocks and caproyl blocks were analyzed using WAXD analysis to uncover existence of the crystalline stereoblock lactyl blocks in the copolymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2536–2544  相似文献   

12.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

13.
A dilactone, 13,26‐dihexyl‐1,14‐dioxacyclohexacosane‐2,15‐dione (12‐HSAD), was synthesized by lipase‐catalyzed reaction of 12‐hydroxystearic acid (12‐HSA) in high yield. It was subjected to the ring‐opening polymerization with various catalysts to obtain poly(12‐hydroxystearate) (PHS). The polymerization system of 12‐HSAD showed an interesting polymerization behavior because of its large ring system. The polymers produced by this polymerization were directly reacted with L ‐lactide to obtain a diblock copolymer of poly(L ‐lactide)‐block‐poly‐(12‐hydroxystearate) (PLLA‐b‐PHS). Characterization of the resultant copolymers was also performed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Four metal benzylalkoxides, [L2M2(μ‐OBn)2] (M = Mg or Zn), based on NNO‐tridentate ketiminate ligands are synthesized and characterized. X‐ray crystal structural studies of [(L1)2Mg2(μ‐OBn)2] ( 1a ) and [(L1)2Zn2(μ‐OBn)2] ( 1b ) (L1‐H = (Z)‐4‐((2‐(dimethylamino)ethylamino)(phenyl)methylene)‐3‐methyl‐1‐phenyl‐pyrazol‐5‐one) reveal that both complexes 1a and 1b are dinuclear species whereas the geometry around the metal center is penta‐coordinated bridging through the benzylalkoxy oxygen atoms in the solid structure. The activities and stereoselectivities of these four complexes toward the ring‐opening polymerization of L ‐lactide and rac‐lactide are investigated. Polymerization of L ‐lactide initiated by these four metal benzyloxides proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. The kinetic studies for the polymerization of L ‐lactide with compound 1a show first order in both compound 1a and lactide concentrations with the polymerization rate constant, k, of 6.94 M/min. Besides, experimental results demonstrate that among these metal benzylalkoxides, complex 1a exhibits the highest stereoselectivity with a Pr up to 87% and complex 1b possesses the highest activity indicating that the terminal group of NNO‐tridentate ketimine ligands exerts a significant influence on both the reactivity and stereoselectivity of these complexes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2318–2329, 2009  相似文献   

15.
A model polyethylene‐poly(L ‐lactide) diblock copolymer (PE‐b‐PLLA) was synthesized using hydroxyl‐terminated PE (PE‐OH) as a macroinitiator for the ring‐opening polymerization of L ‐lactide. Binary blends, which contained poly(L ‐lactide) (PLLA) and very low‐density polyethylene (LDPE), and ternary blends, which contained PLLA, LDPE, and PE‐b‐PLLA, were prepared by solution blending followed by precipitation and compression molding. Particle size analysis and scanning electron microscopy results showed that the particle size and distribution of the LDPE dispersed in the PLLA matrix was sharply decreased upon the addition of PE‐b‐PLLA. The tensile and Izod impact testing results on the ternary blends showed significantly improved toughness as compared to the PLLA homopolymer or the corresponding PLLA/LDPE binary blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2755–2766, 2001  相似文献   

16.
The aluminum complexes containing two iminophenolate ligands of the type (p‐XC6H4NCHC6H4O‐o)2AlR' (R′=Me ( 3, 4 ) or R′=O(CH2)4OCH=CH2 ( 5, 6 ), X=H ( 3, 5 ), F( 4, 6 )) were synthesized and characterized by 1H, 13C NMR spectroscopy, and X‐ray crystallography. The reaction of AlMe3 with two equivalents of substituted iminophenols gave five‐coordinated {ONR}2AlMe ( 3, 4 ) complexes. Subsequent reaction of these methyl complexes with unsaturated alcohol, HO(CH2)4OCH=CH2, resulted in target compounds 5 and 6 in a good yield. It was shown that the complexes ( 3 ‐ 6 ) are monomeric in solution (NMR) and in solid state (X‐ray analysis). The catalytic activity of the complexes 5 and 6 towards ring‐opening polymerization (ROP) of ?‐caprolactone and d,l ‐lactide was assessed. Complex 5 showed higher activity as compared with 6 , while both of these catalysts induced controlled homo‐ and copolymerization to afford the macromonomers with high content of vinyl ether end groups (Fn > 80%) in a broad range of molecular weights (Mn = 4000–30,000 g mol?1) with relatively narrow MWD (Mw/Mn = 1.1–1.5). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1237–1250  相似文献   

17.
This article reports the synthesis and the properties of novel thermoplastic elastomers of A‐B‐A type triblock copolymer structure, where the hard segment A is poly(l ‐lactide) (PLLA) and the soft segment B is poly(ε‐caprolactone‐stat‐d ,l ‐lactide) (P(CL‐stat‐DLLA)). The P(CL‐stat‐DLLA) block with DLLA content of 30 mol % was applied because of its amorphous nature and low glass transition temperature (Tg = approximately ?40 °C). Successive polymerization of l ‐lactide afforded PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLAs, which exhibited melting temperature (Tm = approximately 150 °C) for the crystalline PLLA segments and still low Tg (approximately ?30 °C) of the soft segments. The triblock copolymers showed very high elongation at break up to approximately 2800% and elastic properties. The corresponding d ‐triblock copolymers, PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLAs (PDLA = poly(d ‐lactide)) were also prepared with the same procedure using d ‐lactide in place of l ‐lactide. When the PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLA was blended with PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLA, stereocomplex crystals were formed to enhance their Tm as well as tensile properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 489–495  相似文献   

18.
Using an in situ‐generated calcium‐based initiating species derived from pentaerythritol, the bulk synthesis of well‐defined four‐arm star poly(L ‐lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7–3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L ‐lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L ‐lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudoliving polymerization was observed. As part of this study, in situ FT‐Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring‐opening polymerization of lactide. The advantages of using this technique rather than FTIR‐ATR and 1H NMR for monitoring L ‐lactide consumption during polymerization are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4736–4748, 2009  相似文献   

19.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

20.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号