首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of their unique visual optic and electronic properties, substituted quinones are commonly used as dyes and pigments; nevertheless, a theoretic background of relationship between the structures and optical properties of such compounds seems to be still undeveloped. Two crystalline forms of 2‐methoxynaphth‐1‐yl‐naphthoquinone (MNQ) have been synthesized and characterized by means X‐ray, NMR, UV–VIS, as well as, MS spectroscopy. The interpretation of intriguing optical properties of two crystalline forms of MNQ, based on detailed spectral and structural characterization, as well as, DFT and MP2 computations clearly connects the conformation of the molecules with their optical and electronic properties. Thus, flatter conformation, stabilized by crystal net force, favours the intense electron density transition from auxochrome to chromophore moiety (which corresponds excitation from HOMO to LUMO), as well as, favours the π‐stacking interaction, that eventually results in colour enhancement. At the same time, small molecules of solvents included into the crystal net allow molecules of arylnaphthoquinones to adopt less rigid conformation what has a dramatic optical outcome. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The most probable complexes formed in biphenylene (BP) nitration pathway have been investigated at B3LYP/6‐31+G(d,p) level of theory in the gas phase. To obtain more accurate energies, single point calculations were carried out at B3LYP/6‐31++G(2d,2p), B3PW91/6‐31+G(d,p), and B3PW91/6‐31++G(2d,2p) levels using B3LYP/6‐31+G(d,p) optimized geometry. The six intermediates and one transition state were found before the subsequent formation of the arenium ion on the potential energy surface of the electrophilic nitration of BP. It was also shown that the position β in the BP is much more susceptible to electrophilic attack than the competing position α. The Natural Bond Orbital (NBO), Charges from Electrostatic Potentials using a Grid based method (CHelpG), and Merz–Singh–Kollman (MK) charges and s‐characters of atoms involved in the reaction mechanism were calculated. Inspection of charges in the moieties indicates that the positive charge in all complexes is chiefly located on the BP, which means that theNO2 moiety received the electron from the BP. To investigate the nature of BP– interaction in the five π‐complexes, atoms in molecules (AIM) analysis was performed. The AIM results suggested that the BP– interactions have an electrostatic characteristic. In addition, high electrostatic interactions were predicted in π‐complexes in which one of the oxygen atoms of interacts with the BP. Nucleus‐independent chemical shift (NICS) methodology has been applied to study the change of antiaromaticity in four‐membered ring of BP upon complexation with . The results based on NICS calculations show that antiaromaticity of four‐membered ring decreases upon complexation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
2‐Ethylhexyl 4‐methoxycinnamate (EHMC) is a very commonly used UVB filter that is known to isomerize from the (E) to the (Z) isomer in the presence of light. In this study, we have performed high level quantum chemical calculations using density functional theory (DFT) with the B3LYP density functional and extended basis sets to study the gas‐phase molecular structure of EHMC and its energetic stability. Calculations were also performed for related smaller molecules cinnamic acid and 4‐methoxycinnamic acid. Charge delocalization has been analyzed using natural charges and Wiberg bond indexes within the natural bond orbital analysis and using nucleus independent chemical shifts. Density functional theory calculations reveal that the (E) isomer of EHMC is more stable than the (Z) by about 20 kJ mol?1 in both the gas and aqueous phases. The enthalpy of formation in the gas phase of (E)‐EHMC was derived from an isodesmic bond separation reaction. Long‐range corrected DFT calculations in implicit water were made in order to understand the excited state properties of the (E) and (Z) isomers of EHMC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
One of the great challenges in the development of lithium–oxygen batteries (Li–O2 batteries) is to synthesize cost‐effective and efficient electrocatalysts to overcome several issues such as high charge overpotential and poor cycle life. Here, an efficient method is reported to fabricate a dual component electrocatalyst made of MnO2 nanoparticles supported on 1D Co3O4 nanorods (MnO2–Co3O4), and its electrochemical behavior as a non‐noble metal cathode catalyst is demonstrated in Li–O2 batteries. It is found that the as‐made MnO2–Co3O4 catalyst exhibits an enhanced electrochemical performance, such as increased specific capacity (increase to 4023 mA h g?1 from 2993 mA h g?1), low charge overpotential (reduce 350 mV), high rate performance, and superior cyclability up to 150 cycles. The excellent electrochemical performance is attributed to the synergistic effects of the dual component catalytic system.  相似文献   

6.
Theoretical calculations at the M05‐2X/6‐31+G(d) level of theory have been carried out in order to explore the nature of the mechanism of the thermal decomposition reactions of the β‐hydroxy ketones, 4‐hydroxy‐2‐butanone, 4‐hydroxy‐2‐pentanone, and 4‐hydroxy‐2‐methyl‐2‐pentanone in gas phase and in m‐xylene solution. The mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state. A reasonable agreement between experimental and calculated activation parameters and rate constants has been obtained, the tertiary : secondary : primary alcohol rate constant ratio being calculated, at T = 503.15 K, as 5.9:4.7:1.0 in m‐xylene solution and 44.1:5.0:1.0 in the gas phase, compared with the experimental values, 3.7:1.3:1.0 and 13.5:3.2:1.0, respectively. The progress of the thermal decomposition reactions of β‐hydroxy ketones has been followed by means of the Wiberg bond indices. The lengthening of the O1–C2 bond with the initial migration of the H6 atom from O5 to O1 can be seen as the driving force for the studied reactions. Calculated synchronicity values indicate that the mechanisms correspond to concerted and highly synchronous processes. The transition states are “advanced”, nearer to the products than to the reactants. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The Diels–Alder (DA) reaction is one of the most important reactions in organic chemistry. The controversy surrounding this reaction as to whether it follows a concerted or stepwise mechanism has existed for a long time. The reaction of 1,3‐butadiene and ethylene is the paradigmatic example of the DA reaction. We have reinvestigated the mechanism of this reaction using density functional theory. The theoretical study considered all types of possible pathways for the reaction of 1,3‐butadiene and ethylene using six functionals at different rungs of Jacob's ladder. Therefore, a complete picture is given for a thorough understanding of the iconic DA reaction, and a new stationary point during the reaction processes has been reported for the first time. The calculated results indicated that three functionals, ωB97X‐D, M06‐2X, and B2‐PLYP, of the fourth and fifth rungs of Jacob's ladder performed well in the investigation of the mechanism of this reaction and that the reliable basis set should be larger than 6‐311+G(2d,p). The cis‐1,3‐butadiene more easily reacted with ethylene compared with 1,3‐butadiene in the trans conformation. The concerted mechanism was found to be energetically favorable, whose energy barrier is around 10 kcal/mol lower than that of the stepwise mechanism. Two investigated solvents, toluene and CH3CN, had little impact on this simple DA reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Density functional theory method and B3LYP/6‐311++G(d,p) level of theory were used to determine the acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution (H2O, DMSO, and CH3CN) phase. Polarized continuum model was applied to calculate pKa values of alkyl sulfonic acids and polyolalkyl sulfonic acids. A comparison between acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution phase indicates that the acidity strength of polyolalkyl sulfonic acids enhances with the increase of the cooperativity effect of intramolecular hydrogen bonds in polyolalkyl sulfonic acids. Natural bond orbital and quantum theory of atoms in molecules analyses also confirm the role of cooperativity effect on the acidity of polyolalkyl sulfonic acids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
B3LYP/6‐31G* calculations for competing (2 + 3)‐cycloaddition pathways for 2‐nitropropene‐1 (1) to Z‐C, N‐diarylnitrones ( 2a – e ) suggest a concerted reaction mechanism. However, the results point to the strongly asymmetric nature of transition complexes. Increasing polarity of the reaction environment and presence of electron‐donating substituents in the nitrone phenyl rings contribute to the higher asymmetry of these structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The electronic properties of the ground state, unrelaxed and relaxed first excited states of push–pull hyperbranched molecules bearing amino and nitro terminal groups have been studied at BB1K/cc‐pvdz//HF/6‐31g(d), TD‐BB1K/cc‐pvdz//HF/6‐31g(d) and TD‐BB1K/cc‐pvdz//CIS/6‐31g(d) levels of theory, respectively. It was demonstrated that dendritic architecture of push–pull molecules favours the charge transfer in the excited state compared to linear molecules. The possibility of adopting a plane conformation is an important condition for the charge transfer in an excited state. According to the calculations 1:1 ratio of donor and acceptor groups is another important precondition for the manifestation of strong charge separation in the excited state. In case of excess of nitro groups over the amino, some of the excitations participating in the S0 → S1 transition favour the charge transfer in the excited state in the opposite directions, thus decreasing the charge separation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Electronic structures of binuclear ruthenium complexes [Ru2(terpy)2(tppz)]4+ ( 1A ) and [Ru2Cl2(L)2(tppz)]2+ {L = bpy ( 2A ), phen ( 3A ), and dpphen ( 4A )} were studied by density functional theory calculations. Abbreviations of the ligands (Ls) are bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, dpphen = 4,7‐diphenyl‐1,10‐phenanthroline, terpy = 2,2′:6′,2″‐terpyridine, and tppz = tetrakis(2‐pyridyl)pyrazine. Their mononuclear reference complexes [Ru(terpy)2]2+ ( 1B ) and [RuClL(terpy)]+ {L = bpy ( 2B ), phen ( 3B ), and dpphen ( 4B )} were also examined. Geometries of these mononuclear and binuclear Ru(II) complexes were fully optimized. Their geometric parameters are in good agreement with the experimental data. The binuclear complexes were characterized by electrospray ionization mass spectrometry, UV–Vis spectroscopy, and cyclic voltammograms. Hexafluorophosphate salts of binuclear ruthenium complexes of 3A and 4A were newly prepared. The crystal structure of binuclear complex 1A (PF6)4 was also determined. Orbital interactions were analyzed to characterize the metal‐to‐ligand charge‐transfer (MLCT) states in these complexes. The Cl? ligand works to raise the orbital energy of the metal lone pair, which leads to the low MLCT state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Effect of the number and positions of the methoxycarbonyl substituents in 2‐phosphaindolizine on the feasibility of its Diels–Alder (DA) reaction with 1,3‐butadiene has been investigated theoretically at the density functional theory (DFT) level. Among the series of four differently substituted 2‐phosphaindolizines, 3‐methoxycarbonyl‐2‐phosphaindolizine does not undergo the DA reaction due to the highest activation barrier (29.49 kcal mol?1) and endothermicity, whereas the activation barrier of the corresponding reaction of 1,3‐bis(methoxycarbonyl)‐2‐phosphaindolizine is lowest (22.43 kcal mol?1) with exothermicity making it possible to occur. This reactivity trend is corroborated by FMO energy gaps as well as by global electrophilicity powers of the reactants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A Smith–Purcell (S–P) free electron laser (FEL) composed of a metallic diffraction flat grating, an open cylindrical mirror cavity and a relativistic sheet electron beam with moderate energy, is presented. The characteristics of this device are studied by theoretical analysis, experimental measurements and particle-in-cell (PIC) simulation method. Results indicate that coherent radiation with output peak power up to 50 MW at millimeter wavelengths can be generated by using relativistic electron beam of moderate energy.  相似文献   

15.
In the present study, we investigate the structures of glucosylated curcumin derivatives with DFT at B3LYP/6‐31G* level. A conformational analysis is performed in order to determine the conformational minimum (GS) and rotational transition state (TS) of curcumin derivatives and then their electronic features are evaluated. HOMO and LUMO frontier orbitals and maps of electron density potential (MEPs) are plotted and compared. In order to correlate their predicted spectroscopic properties with IR, UV–vis and NMR experimental data we extended the theoretical study on electronic properties to different solvents (H2O, MeOH, ACN, DMSO). The main finding is that the curcuminic core maintains the same geometrical and electronic structures in all compounds miming the metal coordination capability showed by curcumin. Therefore, we may confirm that the presence of glucose does not affect the electronic properties of the derivatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The host–guest complexes formed with [6]cycloparaphenyleneacetylene ([6]CPPA) and its anthracene‐containing derivative ([6]CPPAs) hosts and fullerene C70 guest were explored by density functional calculations. Besides two previously reported configurations in which C70 guest is standing or lying in the cavity of the host, we found a new kind of configuration in which C70 guest is half‐lying in the cavity of the host. More interestingly, the calculated results revealed that the fine‐tuning deformations occur readily during the formations of the complexes, suggesting that both [6]CPPA and [6]CPPAs are highly elastic host molecules. The large host–guest binding energies indicate that both two host molecules, [6]CPPA and [6]CPPAs, have excellent encapsulation ability for C70 guest, and the [6]CPPAs even has much better encapsulation ability for C70 than [6]CPPA. Furthermore, the host–guest interactions regions were detected and visualized in real space based on the electron density and reduced density gradient. Additionally, 1H NMR spectra of those three different kinds of configurations mentioned earlier have been calculated with gage‐independent atomic orbital method, which may be helpful for further experimental characterizations in future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Gas‐phase structure, hydrogen bonding, and cation–anion interactions of a series of 1‐(2‐hydroxyethyl)‐3‐methylimidazolium ([HOEMIm]+)‐based ionic liquids (hereafter called hydroxyl ILs) with different anions (X = [NTf2], [PF6], [ClO4], [BF4], [DCA], [NO3], [AC] and [Cl]), as well as 1‐ethyl‐3‐methylimizolium ([EMIm]+)‐based ionic liquids (hereafter called nonhydroxyl ILs), were investigated by density functional theory calculations and experiments. Electrostatic potential surfaces and optimized structures of isolated ions, and ion pairs of all ILs have been obtained through calculations at the Becke, three‐parameter, Lee–Yang–Parr/6‐31 + G(d,p) level and their hydrogen bonding behavior was further studied by the polarity and Kamlet–Taft Parameters, and 1H‐NMR analysis. In [EMIm]+‐based nonhydroxyl ILs, hydrogen bonding preferred to be formed between anions and C2–H on the imidazolium ring, while in [HOEMIm]+‐based hydroxyl ILs, it was replaced by a much stronger one that preferably formed between anions and OH. The O–H···X hydrogen bonding is much more anion‐dependent than the C2–H···X, and it is weakened when the anion is changed from [AC] to [NTf2]. The different interaction between [HOEMIm]+ and variable anion involving O–H···X hydrogen bonding resulted in significant effect on their bulk phase properties such as 1H‐NMR shift, polarity and hydrogen‐bond donor ability (acidity, α). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
17O NMR shieldings of 3‐substituted(X)bicyclo[1.1.1]pentan‐1‐ols ( 1 , Y = OH), 4‐substituted(X)bicyclo[2.2.2]octan‐1‐ols ( 2 , Y = OH), 4‐substituted(X)‐bicyclo[2.2.1]heptan‐1‐ols ( 3 , Y = OH), 4‐substituted(X)‐cuban‐1‐ols ( 4 , Y = OH) and exo‐ and endo‐ 6‐substituted(X)exo‐bicyclo[2.2.1]heptan‐2‐ols ( 5 and 6 , Y = OH, respectively), as well as their conjugate bases ( 1 – 6 , Y = O?), for a set of substituents (X = H, NO2, CN, NC, CF3, COOH, F, Cl, OH, NH2, CH3, SiMe3, Li, O?, and NH) covering a wide range of electronic substituent effects were calculated using the DFT‐GIAO theoretical model at the B3LYP/6‐311 + G(2d, p) level of theory. By means of natural bond orbital (NBO) analysis various molecular parameters were obtained from the optimized geometries. Linear regression analysis was employed to explore the relationship between the calculated 17O SCS and polar field and group electronegativity substituent constants (σF and σχ, respectively) and also the NBO derived molecular parameters (oxygen natural charge, Qn, occupation numbers of the oxygen lone pairs, no, and occupancy of the C? O antibonding orbital, σ*CO(occup)). In the case of the alcohols ( 1 – 6 , Y = OH) the 17O SCS appear to be governed predominantly by the σχ effect of the substituent. Furthermore, the key determining NBO parameters appear to be no and σ*CO(occup). Unlike the alcohols, the calculated 17O SCS of the conjugate bases ( 1 – 6 , Y = O?), except for system 1 , do not respond systematically to the electronic effects of the substituents. An analysis of the SCS of 1 (Y = O?) raises a significant conundrum with respect to their origin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The alanine (Ala)‐based cluster models of C5, C7, and C10 H‐bonds are studied at the DFT/B3LYP level. CPMD/BLYP simulations of the infinite polyalanine α‐helix (C13 H‐bond) and the two‐stranded β‐sheets are performed. Combined use of frequency shifts and electron‐density features enable us to detect and describe quantitatively the non‐covalent interactions (H‐bonds) defining the intrinsic properties of Ala‐based secondary structures. The energies of the primary N? H O H‐bonds are decreasing in the following way: C13 > C5 ≥ C7 > C10. The energies of the secondary N? H O, N?H N, and H H interactions are comparable to those of the primary H‐bonds (~4.5 kcal/mol). Side chain–backbone C? H O interaction is found to be the weakest non‐covalent interaction in the considered species. Its energy is ~0.5 kcal/mol in the infinite polyalanine α‐helix. Quantum‐topological electron‐density analysis is found to be a powerful tool for the detection of secondary non‐covalent interactions (C?O H? C and H H) and bifurcated H‐bonds, while the frequency shift study is useful for the identification and characterization of primary or secondary H‐bonds of the N? H O type. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Quantum chemistry study was performed on interaction between tetramethylammonium (TMA) and aromatic cages by means of the MP2 method to show how TMA sits in an aromatic cage that is composed of benzenes. The MP2 calculations on TMA–(benzene)n complexes demonstrate that the more the benzene molecules in the aromatic cage, the stronger the binding strength between the cage and TMA. In details, the structure of TMA–(benzene)n (n = 1–4) complexes can be easily constructed by superimposing n TMA‐benzene complexes via TMA, and the binding energies of the TMA–(benzene)n complexes are the sum of the n corresponding TMA‐benzene systems. For instance, the distances between the N of TMA and the plane of the benzene ring are 4.238, 4.252, 4.264 ,and 4.276 Å, respectively, for TMA–(benzene)n (n = 1–4) complexes, and the BSSE corrected binding energies at MP2/6‐311++G** level are ?8.8, ?17.3, ?25.8 and ?34.3 kcal/mol, respectively, for TMA– (benzene)n (n = 1–4) complexes. Thus, this study provides us useful information on how a cation interacts with an aromatic cage in terms of complex geometry and binding strength. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号