首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Kinetic parameters of the unusual [2π + 2σ + 2σ]‐cycloaddition reactions of quadricyclane ( 1 ) with tetracyanoethylene ( 2 ), 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 3 ), N‐phenylmaleimide ( 4 ), and diethyl azodicarboxylate ( 5 ) are determined experimentally. Additionally, the enthalpies of 1  +  2 reaction in 1,4‐dioxane solution (?236.6 ± 1.0 kJ mol?1) and 1  +  3 reaction in toluene (?255.0 ± 2.8 kJ mol?1) are determined calorimetrically and shown to be the largest in absolute magnitude among all known cycloaddition reactions involving these dienophiles. Solvent effect on the rate of 1 + 3 reaction in 11 solvents is studied and found to be moderate and similar to that of the conventional Diels‐Alder and ene reactions. The difference in the reaction rate constants of 1 with different dienophiles can be up to 9 orders of magnitude and is mainly caused by the difference in activation enthalpies. This difference is not correlated with the standard enthalpies of reactions and is likely the result of high sensitivity of the [2π + 2σ + 2σ] reaction rates to the energy of donor‐acceptor interactions between the reactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号