首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

2.
Atom transfer radical polymerization conditions with copper(I) bromide/pentamethyldiethylenetriamine (CuBr/PMDETA) as the catalyst system were employed for the polymerization of tert‐butyl acrylate, methyl acrylate, and styrene to generate well‐defined homopolymers, diblock copolymers, and triblock copolymers. Temperature studies indicated that the polymerizations occurred smoothly in bulk at 50 °C. The kinetics of tert‐butyl acrylate polymerization under these conditions are reported. Well‐defined poly(tert‐butyl acrylate) (PtBA; polydispersity index = 1.14) and poly(methyl acrylate) (PMA; polydispersity index = 1.03) homopolymers were synthesized and then used as macroinitiators for the preparation of PtBA‐b‐PMA and PMA‐b‐PtBA diblock copolymers in bulk at 50 °C or in toluene at 60 or 90 °C. In toluene, the amount of CuBr/PMDETA relative to the macroinitiator was important; at least 1 equiv of CuBr/PMDETA was required for complete initiation. Typical block lengths were composed of 100–150 repeat units per segment. A triblock copolymer, composed of PtBA‐b‐PMA‐b‐PS (PS = polystyrene), was also synthesized with a well‐defined composition and a narrow molecular weight dispersity. The tert‐butyl esters of PtBA‐b‐PMA and PtBA‐b‐PMA‐b‐PS were selectively cleaved to form the amphiphilic block copolymers PAA‐b‐PMA [PAA = poly(acrylic acid)] and PAA‐b‐PMA‐b‐PS, respectively, via reaction with anhydrous trifluoroacetic acid in dichloromethane at room temperature for 3 h. Characterization data are reported from analyses by gel permeation chromatography; infrared, 1H NMR, and 13C NMR spectroscopies; differential scanning calorimetry; and matrix‐assisted, laser desorption/ionization time‐of‐flight mass spectrometry. The assembly of the amphiphilic triblock copolymer PAA90b‐PMA80b‐PS98 within an aqueous solution, followed by conversion into stable complex nanostructures via crosslinking reactions between the hydrophilic PAA chains comprising the peripheral layers, produced mixtures of spherical and cylindrical topologies. The visualization and size determination of the resulting nanostructures were performed by atomic force microscopy, which revealed very interesting segregation phenomena. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4805–4820, 2000  相似文献   

3.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
ZHANG  Xiaohuan  WANG  Beidi  YANG  Dong  ZHANG  Xiaohong  YUAN  Li  TANG  Qianqian  HU  Jianhua 《中国化学》2009,27(11):2273-2278
A new amphiphilic graft copolymer containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(vinyl acetate) side chains was synthesized via sequential atom transfer radical polymerization (ATRP) followed by selective hydrolysis of poly(methoxymethyl acrylate) backbone. Grafting‐from strategy was employed to synthesize PMOMA‐g‐PVAc graft copolymer (Mw/Mn=1.64) via ATRP. The final PAA‐g‐PVAc amphiphilic graft copolymer was obtained by selective acidic hydrolysis of PMOMA backbone in acidic environment without affecting the side chains. The critical micelle concentrations (cmc) in aqueous media were determined by a fluorescence probe technique. The micelle morphologies were found to be spheres.  相似文献   

5.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


6.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

7.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

8.
Well‐defined amphiphilic graft copolymer with hydrophobic polysulfone (PSU) backbone and hydrophilic poly(acrylic acid) (PAA) side chains were synthesized and characterized. For this purpose, commercially available PSU was converted to azido‐functionalized polymer (PSU‐N3) by successive chloromethylation and azidation processes. Independently, poly(tert‐butyl acrylate) (PtBA) with an alkyne‐end‐group is obtained by using suitable initiator in atom transfer radical polymerization (ATRP). Then, this polymer was successfully grafted onto PSU‐N3 by click chemistry to yield polysulfone‐graft‐poly(tert‐butyl acrylate), (PSU‐g‐PtBA). Finally, amphiphilic polysulfone‐graft‐poly(acrylic acid), (PSU‐g‐PAA), membranes were obtained by hydrolyzing precursor the PSU‐g‐PtBA membranes in trifluoroacetic acid. The final polymer and intermediates at various stages were characterized by 1H NMR, FTIR, GPC, and SEM analyses. Protein adsorption and eukaryotic and prokaryotic cell adhesion on PSU‐g‐PAA were studied and compared to those of PSU‐g‐PtBA and unmodified PSU. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
A series of well‐defined amphiphilic graft copolymers containing hydrophilic poly(acrylic acid) (PAA) backbone and hydrophobic poly(vinyl acetate) (PVAc) side chains were synthesized via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization followed by selective hydrolysis of poly(tert‐butyl acrylate) backbone. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl) acrylate, was first prepared, which can be polymerized via RAFT in a controlled way to obtain a well‐defined homopolymer with narrow molecular weight distribution (Mw/Mn = 1.08). This homopolymer was transformed into xanthate‐functionalized macromolecular chain transfer agent by reacting with o‐ethyl xanthic acid potassium salt. Grafting‐from strategy was employed to synthesize PtBA‐g‐PVAc well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.40) via RAFT of vinyl acetate using macromolecular chain transfer agent. The final PAA‐g‐PVAc amphiphilic graft copolymers were obtained by selective acidic hydrolysis of PtBA backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media were determined by fluorescence probe technique. The micelle morphologies were found to be spheres. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6032–6043, 2009  相似文献   

10.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A series of linear and lightly crosslinked nanostructured latices was prepared by a sequential multistage semicontinuous emulsion polymerization process alternating styrene (S) and n‐butyl acrylate (BA) monomer feeds five times, that is ten stages, and vice versa, along with several control latices. Transmission electron micrographs of the RuO4‐stained cross sections of nanostructured and copolymer latex particles and films showed that their particle morphologies were not very different from each other, but the nanostructured latex particles were transformed into a nanocomposite film containing both polystyrene (PS) and poly(n‐butyl acrylate) (PBA) nanodomains interconnected by their diffuse polymer mixtures (i.e. interlayers). The thermal mechanical behaviors of the nanostructured latex films showed broad but single Tgs slightly higher than those of their counterpart copolymer films. These single Tgs indicated that their major component phases were the diffuse interlayers and that they behaved like pseudopolymer alloys. The minimum film formation temperatures of nanostructured latices capped with PBA and PS, respectively, were 15 °C lower than and equal to those of their counterpart copolymer latices, but their Tgs were about 10 °C higher. Consequently, nanostructured latices enabled us to combine good film formation with high strengths for adhesives and coatings applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2826–2836, 2006  相似文献   

12.
Characterization of block size in poly(ethylene oxide)‐b‐poly(styrene) (PEO‐b‐PS) block copolymers could be achieved by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well‐established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end‐group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO‐b‐PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol?1 and Mn(PS) ranging from 4000 to 21,000 g mol?1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380–3390, 2009  相似文献   

13.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

14.
Both bifunctional initiators, the new low cost bBCB‐diCl [4,9‐dichloro,2,4,7,9‐tetramethyl‐tricyclo[6.2.0.036]deca‐1(8),2,6‐triene] and the universally used “hindered” HDCCl [1‐(tert‐butyl)‐3,5‐bis(2‐chloropropan‐2‐yl)benzene] induce the living bidirectional block copolymerization of isobutylene (IB) followed by styrene (St), and produce PSt‐b‐PIB‐b‐PSt (SIBS) triblocks. We discovered that the molecular weights of triblocks kept significantly increasing long after St conversion reached completion during syntheses. Results were explained by the formation of blends consisting of the expected linear SIBS plus hyperbranched SIBS, HB(SIBS)n. The structure of high molecular weight (>106 g/mol) HB(SIBS)n was characterized by various techniques, and key properties of SIBS/HB(SIBS)n blends were investigated. The mechanism of HB(SIBS)n formation and the synthesis of SIBS/HB(SIBS)n blends was elucidated. The properties of SIBS/HB(SIBS)n blends are superior to those of SIBS. Thus, whereas SIBS exhibits ∼25 MPa tensile strength and ∼450% elongation, SIBS/HB(SIBS)n blends exhibit 25–27 MPa tensile strength and >400% elongation; deformation under constant load of SIBS is ∼12%, whereas that of SIBS/HB(SIBS)n is <1%; permanent set of SIBS is 1.3% whereas that of SIBS/HB(SIBS)n is <0.5%. SIBS/HB(SIBS)n blends also exhibit higher yield, yield strength, and toughness than SIBS. The microstructure/property relationship of HB(SIBS)n is discussed and the reasons for enhanced properties of SIBS/HB(SIBS)n blends are analyzed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 705–713  相似文献   

15.
Well‐defined alkoxysilane oligomers containing a cagelike carbosiloxane core were synthesized and used as novel building blocks for the formation of siloxane‐based hybrid networks. These oligomers were synthesized from the cagelike trimer derived from bis(triethoxysilyl)methane by silylation with mono‐, di‐, and triethoxychlorosilanes ((EtO)nMe3?nSiCl, n=1, 2, and 3). Hybrid xerogels were prepared by hydrolysis and polycondensation of these oligomers under acidic conditions. The structures of the products varied depending on the number of alkoxy groups (n). When n=2 and 3, microporous xerogels (BET surface areas of 820 and 510 m2 g?1, respectively) were obtained, whereas a nonporous xerogel was obtained when n=1. 29Si NMR spectroscopic analysis suggested that partial rearrangement of the siloxane networks, which accompanied the cleavage of the Si–O–Si linkages, occurred during the polycondensation processes. By using an amphiphilic triblock copolymer surfactant as a structure‐directing agent, hybrid thin films with a 2D hexagonal mesostructure were obtained when n=2 and 3. These results provide important insight into the rational synthesis of molecularly designed hybrid materials by sol–gel chemistry.  相似文献   

16.
In this work, novel star‐hyperbranched block copolymers containing four polystyrene arms and hyperbranched polyglycidol at the end of each arm (sPS‐b‐HPG) have been synthesized. The polystyrene arms were prepared through atom transfer radical polymerization of styrene starting from a four‐arm initiator. The hydroxyl‐terminated PS star polymers served as precursors for the cationic ring‐opening polymerization of glycidol using BF3·OEt2 as the catalyst. The chemical structures of these block copolymers were characterized by using 1H and 13C NMR. DSC analysis indicated that the star‐hyperbranched block copolymers exhibited two distinct glass transition temperatures corresponding to the linear PS and the HPG segments, respectively. The addition of LiClO4 increased the Tg of HPG segments at low concentrations, however, decreased the Tg at high concentrations. The Tg of PS segments was not affected by the addition of salts at all. Furthermore, the interaction of sPS‐b‐HPG with LiBr was studied by using viscosity analysis based on the Jones–Dole equation. The star‐like PS core strengthened the interaction of sPS‐b‐HPG with Li ions that could facile the inhomogeneous distribution of Li cations and anions in different phases, which is important in polymeric electrolytes for lithium chemical power sources. The ionic conductivity of one sPS‐b‐HPG/LiClO4 electrolyte was measured to be higher than that of HPG/LiClO4 electrolyte. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 949–958, 2009  相似文献   

17.
The surface molecular motion of monodisperse polystyrene (PS) with various chain end groups was investigated on the basis of temperature‐dependent scanning viscoelasticity microscope (TDSVM). The surface glass transition temperatures, Tgss for the proton‐terminated PS (PS‐H) films with number‐average molecular weight, Mn of 4.9k–1,450k measured by TDSVM measurement were smaller than those for the bulk one, with corresponding Mns, and the Tgss for Mn smaller than ca. 50k were lower than room temperature (293 K). In the case of Mn = ca. 50k, the Tgss for the α,ω‐diamino‐terminated PS (α,ω‐PS(NH2)2) and α,ω‐dicarboxy‐terminated PS (α,ω‐PS(COOH)2) films were higher than that of the PS‐H film. On the other hand, the Tgs for the α,ω‐perfluoroalkylsilyl‐terminated PS (α,ω‐PS(SiC2CF6)2) film with the same Mn was much lower than those for the PS films with all other chain ends. The change of Tgs for the PS film with various chain end groups can be explained in terms of the depth distribution of chain end groups at the surface region.  相似文献   

18.
A series of well‐defined amphiphilic star graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic poly(propylene oxide) side chains were synthesized by the sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer nitroxide radical coupling (ATNRC) or single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction followed by the selective hydrolysis of poly(tert‐butyl acrylate) backbone. A Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate, was first homopolymerized via RAFT polymerization using a new star‐like chain‐transfer agent with four arms in a controlled way to give a well‐defined star‐like backbone with a narrow molecular weight distribution (Mw/Mn = 1.23). The grafting‐onto strategy was used to synthesize the well‐defined PtBA‐g‐PPO star graft copolymers with narrow molecular weight distributions (Mw/Mn = 1.14–1.25) via ATNRC or SET‐NRC reaction between the Br‐containing PtBA‐based star‐like backbone and poly(propylene oxide) with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group using CuBr/PMDETA or Cu/PMDETA as catalytic system. PAA‐g‐PPO amphiphilic star graft copolymers were obtained by the selective acidic hydrolysis of star‐like PtBA‐based backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media and brine were determined by the fluorescence probe technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2084–2097, 2010  相似文献   

19.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号